
www.manaraa.com

University of Iowa University of Iowa

Iowa Research Online Iowa Research Online

Theses and Dissertations

Summer 2018

Design for test methods to reduce test set size Design for test methods to reduce test set size

Yingdi Liu
University of Iowa

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

Copyright © 2018 Yingdi Liu

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/6459

Recommended Citation Recommended Citation
Liu, Yingdi. "Design for test methods to reduce test set size." PhD (Doctor of Philosophy) thesis, University
of Iowa, 2018.
https://doi.org/10.17077/etd.5snwe8rc

Follow this and additional works at: https://ir.uiowa.edu/etd

 Part of the Electrical and Computer Engineering Commons

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F6459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F6459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.5snwe8rc
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F6459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F6459&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

DESIGN FOR TEST METHODS TO REDUCE TEST SET SIZE

by

Yingdi Liu

A thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

August 2018

Thesis Supervisor: Professor Sudhakar M. Reddy

www.manaraa.com

Copyright by

YINGDI LIU

2018

All Rights Reserved

www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Yingdi Liu

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Electrical and Computer Engineering at the August 2018 graduation.

Thesis Committee: ___________________________________
 Sudhakar M. Reddy, Thesis Supervisor

 Janusz Rajski, Thesis Advisor

 Jon G. Kuhl

 David R. Andersen

 Xiaodong Wu

www.manaraa.com

 ii

To My Parents

www.manaraa.com

 iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Prof. Sudhakar M.

Reddy for the continuous support throughout the years of my graduate work, for his

patience, encouragement, and immense knowledge. I would also like to express my

heartfelt thanks to my advisor, Dr. Janusz Rajski for suggesting the topics researched in

this thesis, the extraordinary patience, guidance and encouragement throughout the years

of my study and related research.

I would like to thank the rest of my thesis committee members, Prof. David

Andersen, Prof. Jon Kuhl and Prof. Xiaodong Wu for their insightful comments and

advices on this work.

My sincere thanks also go to Chen Wang, Xijiang Lin, Elham Moghaddam, Jedrzej

Solecki, Yu Huang and Nilanjan Mukherjee at Mentor, a Siemens Business, and Prof. Jerzy

Tyszer at Poznan University of Technology, for their sharing and help.

Finally, I am profoundly grateful to my wife Jin Xiang, my parents and my

grandparents, for their love and support throughout the years of my PhD study.

www.manaraa.com

 iv

ABSTRACT

With rapid development in semiconductor technology, today's large and complex

integrated circuits require a large amount of test data to achieve desired test coverage. Test

cost, which is proportional to the size of the test set, can be reduced by generating a small

number of highly effective test patterns. Automatic Test Pattern Generators (ATPGs)

generate effective deterministic test patterns for different fault models and can achieve high

test coverage. To reduce ATPG-produced test set size, design for test (DFT) methods can

be used to further improve the ATPG process and apply generated test patterns in more

efficient ways.

The first part of this dissertation introduces a test point insertion (TPI) technique

that reduces the test pattern counts and test data volume of a design by adding additional

hardware called control points. These dedicated control points are inserted at internal nodes

of the design to resolve large internal conflicts during ATPG. Therefore, more faults can

be detected by a single test pattern. To minimize silicon area needed to implement these

control points, we propose a method that reuses some existing functional flip-flops as

drivers of the control points, instead of inserting dedicated flip-flops for the control points.

Experimental results on industrial designs indicate that the proposed technique can achieve

significant test pattern reductions, similar to the control points using dedicated flip-flops.

The second part of this dissertation proposes a staggered ATPG scheme that

produces deterministic test-per-clock-based staggered test patterns by using dedicated

compactor scan chains to capture additional test responses during scan shift cycles that are

used for regular scan cells to completely load each test pattern. These compactor scan

chains are formed by dedicated capture-per-cycle observation test points inserted at

suitable locations of the design. By leveraging this new scan infrastructure, more

compacted test patterns can be generated, and more faults can also be systematically

detected during the simulation process, thus reducing the overall test pattern count.

www.manaraa.com

 v

To meet the stringent test requirements for in-system test (especially for automotive

test), a built-in self-test (BIST) approach, called Stellar BIST, is introduced in the last part

of this dissertation. Stellar BIST employs a dedicated BIST infrastructure with additional

on-system memory to store some parent test patterns (seeds). Derivative test patterns can

be obtained by complementing selected bits of corresponding parent patterns through an

on-chip Stellar BIST controller. A dedicated ATPG process is also proposed for generating

a minimal set of test patterns that need to be stored and their effective derivative patterns

that require short test application time. Furthermore, the proposed scheme can provide

flexible trade-offs between stored test data volume and test application time.

www.manaraa.com

 vi

PUBLIC ABSTRACT

With rapid development in semiconductor technology, today's large and complex

integrated circuits require a large amount of test data to achieve desired test coverage. Test

cost, which is proportional to the size of the test set, can be reduced by generating a small

number of highly effective test patterns. Automatic Test Pattern Generators (ATPG)

generate effective deterministic test patterns for different fault models and can achieve high

test coverage. To reduce ATPG-produced test set size, design for test (DFT) methods can

be used to further improve the ATPG process and apply generated test patterns in more

efficient ways.

We first introduce a test point insertion (TPI) technique that reduces test pattern

count and test data volume of a design by adding additional hardware called control points

that are inserted at internal nodes of the design to resolve large internal conflicts of ATPG

assignments. To minimize silicon area needed to implement these control points, we

propose a method that reuses some existing functional flip-flops as drivers of the control

points, instead of inserting dedicated flip-flops for the control points.

We also propose a staggered ATPG scheme that produces deterministic test-per-

clock-based staggered test patterns by using dedicated compactor scan chains to capture

test responses by leveraging the scan shift cycles. This new scan infrastructure allows us

to generate more compacted test patterns to systematically detect more faults and reduces

the overall test pattern count.

Finally, we introduce a built-in self-test (BIST) approach, called Stellar BIST that

employs a dedicated BIST infrastructure with additional memory to store a minimal set of

parent test patterns (seeds). Desired test stimuli can be obtained by complementing selected

bits of corresponding parent patterns through an on-chip Stellar BIST controller.

www.manaraa.com

 vii

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ...x

CHAPTER

 1 INTRODUCTION ..1

1.1 Design for Test ...2

1.1.1 Scan Design ..3
1.1.2 Built-in Self-Test (BIST) ..5
1.1.3 Test Compression ...5

1.2 Fault Models ...7
1.2.1 Stuck-at Fault Model ..7
1.2.2 Transition Fault Model ...7
1.2.3 Path Delay Fault Model ..9
1.2.4 Cell-aware Test ...10

1.3 Test Generation ...10
1.4 Test Points ..12
1.5 Automotive Test ...13
1.6 Thesis Overview ...14

 2 MOTIVATION AND PREVIOUS WORKS ...16

2.1 Software Based Methods to Reduce Pattern Counts16

2.1.1 Generation of Compact Test Sets ...17
2.1.2 Synthesis of Easily Testable Circuits ...18

2.2 Test Point Insertion ...19
2.2.1 Motivation for Test Point Insertion ..19
2.2.2 Test Point Insertion for Testability Improvement19
2.2.3 Test Point Insertion for Reducing Deterministic Test Patterns23

2.3 Test-per-clock ...28
2.4 Stored Pattern Test ..31

2.4.1 LBIST Test Schemes ..31
2.4.2 Stored Pattern Test ...32

 3 MINIMAL AREA TEST POINTS FOR DETERMINISTIC
PATTERNS ..34

3.1 Motivation ...34
3.2 Reuse of Functional Flip-flops ...34
3.3 Flip-flop Verification ..39
3.4 Candidate Flip-flops Search Flow ..41
3.5 Experimental Results ..43
3.6 Conclusion ..46

 4 STAGGERED ATPG WITH CAPTURE-PER-CYCLE
OBSERVATION TEST POINTS...47

4.1 Motivation ...47

www.manaraa.com

 viii

4.2 Test-per-clock Scan Architecture ...48
4.3 Staggered ATPG ...50

4.3.1 Test Cube Merging ...51
4.3.2 Fault Simulation ...53
4.3.3 Staggered ATPG with EDT ..55

4.4 Observation Test Points Selection ..55
4.4.1 Observation Test Points Selection Using ATPG-detection56
4.4.2 Observation Test Points Selection Using Fault-propagation..........58

4.5 Experimental Results ..60
4.6 Conclusion ..63

 5 DETERMINISTIC STELLAR BIST FOR IN-SYSTEM TEST64

5.1 STAR-EDT Architecture ..65
5.2 Stellar BIST Test Scheme ...66
5.3 Implementation Flow ..73
5.4 Experimental Results ..75
5.5 Conclusion ..82

 6 CONCLUSIONS ..84

6.1 Summary ...84
6.2 Future Work ..86

REFERENCES ..88

www.manaraa.com

 ix

LIST OF TABLES

Table

3.1 Circuit characteristics ...43

3.2 Reuse of functional flip-flops ATPG results ..44

3.3 Pattern counts for dedicated (D) and functional (F) drivers (stuck-at)45

3.4 Pattern counts for dedicated (D) and functional (F) drivers (transition)45

4.1 Circuit characteristics ...60

4.2 Experimental results (stuck-at faults) ...61

4.3 Experimental results (transition faults) ...62

5.1 Circuit characteristics ...75

5.2 Super-gate structural analysis ...76

5.3 Stored pattern (SP) reduction and test time (Time) increase (stuck-at)76

5.4 Stored pattern (SP) reduction and test time (Time) increase (transition)77

5.5 Memory reduction for stuck-at (SAF) and transition (TDF) faults79

6.1 Staggered ATPG with additional conflict-aware control points85

6.2 Apply Staggered ATPG to Stellar BIST ...86

www.manaraa.com

 x

LIST OF FIGURES

Figure

1.1 Manufacturing test ..2

1.2 Scan flip-flops ...3

1.3 BIST scheme ...4

1.4 EDT architecture [7] ...6

1.5 Waveform for Launch-off-Shift delay test ...8

1.6 Waveform for Launch-off-Capture delay test ..9

1.7 Examples of a D-frontier and a J-frontier ...10

1.8 Test generation example ...11

1.9 Test point examples ..12

2.1 Controllability/observability calculation ..21

2.2 Test point insertion for testability improvement...22

2.3 Conflict on internal lines...23

2.4 Forward propagation and backward justification ...24

2.5 Conflict metrics...27

2.6 Tri-modal scan architecture [58] ...29

3.1 Control point templates ...35

3.2 Conflict analysis for dedicated flip-flops..36

3.3 Conflict analysis for functional drivers ..37

3.4 Control mode ..38

3.5 Propagation mode ...39

3.6 Tracing during locality analysis to find extra candidate flip-flops41

3.7 Combined search flow ..42

4.1 Scan architecture ...48

4.2 Observation point ..49

www.manaraa.com

 xi

4.3 Compatible test cubes ...50

4.4 Scan specifications of test cubes during shift cycles ..51

4.5 Test cube merging ...52

4.6 Observation points insertion ...57

4.7 Fault propagation analysis ..58

5.1 STAR-EDT architecture [94]..65

5.2 Test clusters with multiple complements..67

5.3 Parent pattern and its derivatives ..68

5.4 Stellar BIST test cluster ..69

5.5 Stellar BIST architecture ..71

5.6 Stored patterns vs. applied patterns ..81

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

With rapid growth in technology, Moore's law indicates that the number of

transistors in an integrated circuit doubles every eighteen months to two years, while the

size of the transistors themselves are actually decreasing. This may lead to more

complicated design structures which would require more test patterns to test the entire

design. It may also require advanced ways to apply tests.

Contemporary Automatic Test Pattern Generators (ATPG) generate test patterns

for different fault models and for large complex nanometer designs to achieve high fault

coverage. Working synergistically with on-chip test compression logic, ATPG can produce

highly compact (small) test sets. However, due to the fast-changing semiconductor

manufacturing process and the increasing complexity of digital designs, the inflated test

data volume has had a significant impact on the test application time, which, in turn, has

had a visible impact on the overall test cost. At the same time, the rapid development of

advanced driver assistance systems (ADAS) and self-driving vehicles, with stringent

requirements for high quality and long-term reliability driven by functional safety

standards, demands advanced test solutions that would rely on ATPG to produce small but

effective test sets.

In this thesis, we address the problem of reducing the size of ATPG-produced test

sets (deterministic test patterns). The main objective of this study is to introduce methods

that result in more compact test sets and to apply generated tests in more efficient ways for

different test concerns.

In this chapter, we introduce the basic concept of design for test (DFT) and some

of the DFT methods and fundamentals that are involved in our work.

www.manaraa.com

2

1.1 Design for Test

Manufacturing test screens products after they are manufactured and helps

eliminate products containing defects that occurred during manufacturing process. Test

vectors are loaded into a chip through its primary input pins while responses are observed

through its primary output pins. The tester, known as automatic test equipment (ATE), is

used during the manufacturing test for the circuit under test (CUT). Test vectors and

expected responses are stored in the ATE memory in advance. As shown in Figure 1.1,

during the manufacturing test, test patterns are applied to the CUT and output responses

are then analyzed and compared to expected fault-free responses. If the output responses

do not match the fault-free responses, then the circuit is considered to be defective.

Figure 1.1 Manufacturing test

The cost of performing tests by an ATE could account for a large portion of the

total manufacturing cost. Most of this cost will depend on factors, such as the test

application time and the memory capacity of the ATE. In other words, complicated designs

which require more test patterns and longer test application time would have a higher cost

in ATE based testing. The process of design for testability (DFT) is one way to make a

www.manaraa.com

3

design easier to test. DFT techniques add additional hardware to the CUT to improve its

testability.

In this sub-section, we will introduce some popular DFT methodologies and

concepts including scan design, built-in self-test (BIST), and test data compression.

1.1.1 Scan Design

A CUT typically contains both combinational logic and sequential cells (such as

flip-flops and latches). To test a circuit with sequential cells, test vectors should be

generated over multiple cycles. This may increase the total test application time, as well as

the test vector size. If a circuit contains many sequential elements, generating tests to

achieve meaningful fault coverage for the entire design would be very difficult and has

been found to be impractical.

Figure 1.2 Scan flip-flops

Testing a circuit with pure combinational logic is much simpler and is the preferred

method. If possible, the sequential elements should be made controllable and observable

(like primary inputs and outputs), so the circuit can be tested as a design with pure

www.manaraa.com

4

combinational logic. The DFT methodology of scan design [1] was introduced to achieve

this objective.

Scan design modifies original flip-flops to scan cells, by adding an additional test

mode to the flip-flops. As shown in Figure 1.2, a scan-modified flip-flop has an extra data

input called scan-in (SI) and a test mode control input called scan enable (SE), which

selects between the flip-flop data input SI and its original data input (D). Each SI pin is

directly connected to a primary input or the output of another scan flip-flop (SO), and the

output is connected to an SI pin of another scan flip-flop or a primary output. Thus, during

test mode, these flip-flops form one or more shift registers, also known as scan chains.

During shift cycles (the scan shift is enabled), test vectors are shifted into scan chains from

primary inputs to set scan flip-flops to specific values. Test responses from the

combinational logic of the CUT are then captured (by disabling the scan shift) in to scan

cells. Captured responses are shifted out of the scan chains to primary output pins, while

loading the next test pattern.

Although the scan design technique may add extra hardware to the circuit and may

require extra time for shifting data in and out, it provides a high level of fault coverage and

the capability of performing defect diagnosis.

Figure 1.3 BIST scheme

www.manaraa.com

5

1.1.2 Built-in Self-Test (BIST)

Built-In Self-Test (BIST) [2] is a way to make it possible for a circuit to test itself

through additional hardware.

Figure 1.3 shows a basic BIST scheme. With no external patterns, the BIST

technique uses an internal test pattern generator (TPG) as the pattern source. Linear

feedback shift registers (LFSRs), which are good at generating pseudo-random patterns,

yet require little area overhead, are commonly used as a TPG. The CUT responses to these

random patterns generated from the TPG, are then analyzed through a signature analyzer

(SA), which determines whether the circuit has passed the test. Multiple-input signature

registers (MISRs) are often used to construct a signature analyzer. Responses are

compacted and examined through the MISR. With the help of the BIST technique, the test

can be performed in-field. Thus, the data exchanged between CUT and the tester is

drastically reduced.

Although many faults can typically be detected using random patterns, BIST

requires that the CUT has no bus conflicts and no unbounded X sources (unknown values

that may corrupt the BIST signature have to be bounded by additional logic), and that the

circuit should also be random pattern testable. Typically, it is to top off pseudo-random

patterns with additional deterministic patterns to cover remaining random pattern resistant

faults or use weighted random patterns [2], [3], [4] to achieve required fault coverage.

However, experimental data shows that using top off tests may not help reduce the total

test application time. For this reason, for in-field test, stored pattern test methods are being

considered in which deterministic test patterns are stored in the memory of a system/circuit

under test [5], [6].

1.1.3 Test Compression

Since the design sizes may double every 18 months, test data volume (which is

proportional to the number of test patterns and the number of scan cells) also grows, and

www.manaraa.com

6

the test application time increases. Therefore, a larger test data volume would require more

tester memory for storing test data and would also lead to a longer test application time.

This may lead to a significant increase in test cost.

To achieve reduction of test data volume, several test compression methodologies

have been introduced. An effective test compression technique, called Embedded

Deterministic Test (EDT) [7] was developed by inserting additional logic into the circuit,

utilizing the existing scan design, and refraining from touching any functional paths of the

CUT.

Figure 1.4 EDT architecture [7]

As shown in Figure 1.4, EDT logic contains a decompressor placed between the

chip's input channels and internal scan chain inputs and a compactor placed between

internal scan chain outputs and the chip's output channels. The decompressor consists of a

ring generator and a phase shifter [7]. The ring generator, which is an optimized LFSR, is

used to decompress the compressed data injected from input channels. The phase shifter,

placed at the outputs of the ring generator, reduces linear dependencies between sequences

www.manaraa.com

7

shifted into internal scan chains. A high compression ratio between the number of internal

scan chains and the number of input channels can be achieved with the help of the

decompressor. This allows for a shorter length of internal scan chains by accommodating

a large number of scan chains. Therefore, both the test data volume stored in the tester

memory and the test application time can be reduced. To evaluate output responses, the

compactor, which mainly consists of an XOR tree, is used to observe the output data with

fewer outputs, while not losing the observability of errors in responses from internal scan

chains of faulty circuits.

1.2 Fault Models

During circuit fabrication process, physical defects may occur throughout a device

[8]. These defects may include shorts, opens, or transistor defects. To obtain tests to detect

these defects, different fault models are introduced for pattern generation. In this sub-

section, a brief description of several fault models which have yielded tests that have

achieved great success in detecting defects in manufactured circuits is given.

1.2.1 Stuck-at Fault Model

Stuck-at fault model [9] is used to describe the faulty behavior of a line permanently

tied to a logic value. A line considered to be tied to logic 1 or 0, is said to be stuck-at-1 (s-

a-1) or stuck-at-0 (s-a-0). To test a stuck-at fault, test vectors need to be capable of exciting

the fault as well as propagating the fault-effect to a primary output or a pseudo-primary

output (a scan cell input).

Stuck-at fault model is an important fault model. All the other fault models that are

used today, can be considered as conditional stuck-at faults [10].

1.2.2 Transition Fault Model

Transition delay fault model [11] is introduced to detect defects that cause increased

propagation delays of circuit paths. The two types of transition faults are called the slow-

www.manaraa.com

8

to-rise fault and the slow-to-fall fault. A slow-to-rise fault occurs when a line that needs to

switch from 0 to 1 requires a longer than normal time (delay). If this delay effect can be

captured by any primary output or scan flip-flop, the circuit is not able to function properly

at the given clock speed. Similarly, a slow-to-fall fault occurs when a line requires a longer

time (delay) to switch from 1 to 0.

Based on the definition of the transition fault model, to detect a given transition

fault, two patterns applied at a given clock speed are required. To test a slow-to-rise (slow-

to-fall) fault at a given line, the first pattern has to set the line to the initial value 0 (1), and

the second pattern needs to set the line to the final value 1 (0) and propagate the delayed

transition effect to a primary output or a scan flip-flop. Two of the commonly used

transition fault pattern generation methods include: launch-off-capture (LOC) and launch-

off-shift (LOS), which are briefly introduced below.

Figure 1.5 Waveform for Launch-off-Shift delay test

Launch-off-Shift (LOS) [12]: The timing waveform for a LOS test procedure is

shown in Figure 1.5. The transition at faulty the line is launched in the last shift cycle of

shifting the test, followed immediately by a functional clock pulse to capture the circuit

outputs. The scan enable (SEN) signal is used to switch the CUT from shift mode (launch

www.manaraa.com

9

the transition) to function mode (capture the transition) with at-speed timing. Both patterns

of a two-pattern LOS test are obtained by shifted in values. In LOS test to achieve at-speed

test of the fault the SEN line has to switch fast.

Figure 1.6 Waveform for Launch-off-Capture delay test

Launch-off-Capture (LOC) [13]: The timing waveform for a LOC test procedure is

shown in Figure 1.6. A pair of functional clock pulses is used to launch and capture the

transition after SEN is de-asserted. The scan enable signal does not have to switch fast for

LOC and the second pattern of the two-pattern LOC test is generated from the functional

response of the first pattern.

1.2.3 Path Delay Fault Model

Path delay fault model [14] is another fault model introduced for testing defects

causing circuit delays to increase. Compared to the transition delay fault model, which is

considered to be a local delay fault model to test the transition delay of selected gate inputs

or outputs, the path delay fault model is a global delay fault model that tests the delay of

an entire path.

www.manaraa.com

10

1.2.4 Cell-aware Test

Cell-aware test [15] is a new approach targeting transistor level defects to further

reduce defective parts shipped, especially for advanced manufacturing technologies, such

as FinFET technology. Since tests generated using the traditional stuck-at fault model may

not be sufficient to detect cell-internal defects, the cell-aware test provides a new fault

modeling approach that is based on post-layout transistor-level netlist of cells (gates) with

parasitic effects. As a result, ATPG can then be applied to detect the cell-internal defects

that are not covered by stuck-at patterns.

1.3 Test Generation

To test a given fault, certain controllable inputs (scan cells or PIs) need to be

specified to activate the fault effect and also to propagate the fault effect to an observable

site (scan cells or POs) for the detection of the targeted fault. D-algorithm [16] is a

commonly used algorithm for line justifications and fault propagations during test

generation.

Figure 1.7 Examples of a D-frontier and a J-frontier

To test a stuck-at-v (v = 0 or 1) fault on a given line k, the value v’ (the complement

value of v) should be first implied (justified) on line k. The D notation [16] uses D or D’

to represent the value on a circuit line in the fault-free and faulty circuit. D (D’) stands for

www.manaraa.com

11

1/0 (0/1) where the value above (below) the “/” is the value on a circuit line in the fault-

free (faulty) circuit. These D-values are then propagated forward to an observed output (a

scan flip-flop or a primary output). Propagation of D or D’ to an output requires the

implication of values on the circuit along the path through which D or D’ is propagated.

Two data structures are used during line justifications and D propagations. One data

structure (called D-frontier) contains those gates, whose inputs have received one or more

Ds, while the outputs could not yet be specified. The other data structure, called J-frontier,

contains all those gates with specified outputs but undetermined inputs. Simple examples

of a D-frontier AND gate and a J-frontier OR gate with unspecified pins are shown in

Figure 1.7. To justify a gate in the D-frontier, proper values are assigned to one or more of

the gate’s inputs. If multiple choices of input assignments exist, a decision is made at the

gate by selecting one choice of input assignments. For propagation, gate entries are selected

from the J-frontier and necessary input assignments are made to propagate D or D’.

Selecting gates from any of the data structures and making necessary assignments to related

lines, may remove corresponding entries and add new gate entries.

Figure 1.8 Test generation example

www.manaraa.com

12

Test generation for a given fault using the D-algorithm is the process of clearing all

entries in the J-frontier by making necessary assignments and decisions among internal

lines, with at least one circuit output value being a D or D’. A test generation example for

a s-a-0 fault using D-algorithm is shown in Figure 1.8.

1.4 Test Points

Additional test logic, known as test points, can be inserted into a design to improve

its test quality. Test point insertion (TPI) techniques add control points (CP) and

observation points (OP) to internal lines of a circuit to improve a specific objective related

to testing [8].

Figure 1.9 Test point examples

Control points are additional inputs which together with additional AND/OR gates

set internal lines to desired values when control points are enabled. The control points are

typically driven by dedicated scan flip-flops, rather than additional input pins on the CUT.

AND type control points, using flip-flops driving AND gates, are used to set internal lines

www.manaraa.com

13

to the value 0, by simply setting the driver flip-flop to 0 through scan shift-in without

changing any of the functional path’s values. Similarly, OR type control points, using flip-

flops driving OR gates, are used to set internal lines to the value 1. Observation points are

added to make internal nodes observable. This is similar to jumper cables used to observe

internal nodes on PC boards. Observation points allow the values of the corresponding

locations to be observed, as the states of the observation points are captured in additional

scan flip-flops. Without observation points, these values can only be observed by

propagating through existing paths to some scan cells or primary outputs. Examples of an

AND-type control point, an OR-type control point, and an observation point are shown in

Figure 1.9.

1.5 Automotive Test

In the fast-growing automotive electronics market, integrated circuits (ICs) must

adhere to the most stringent requirements for high quality and long-term reliability driven

by functional safety standards such as ISO 26262 and its Automotive Safety Integrity Level

D (ASIL D) targets [17]. In addition to the high quality of manufacturing test, an ASIL D

compliance for automotive ICs requires advanced and complementary test solutions that

need to respond to the challenges posed by automotive parts and support such test

requirements as:

1. the ability to run in-system tests during functional operations,

2. short test application time, due to strict limits on key-on, key-off, and

especially idle times deployed for periodic (and often segmented [18]) on-line tests,

3. low test power,

4. low silicon area,

5. the ability to deal with defect sensitivities unknown at the time of IC

manufacturing,

6. the potential to scale up easily.

www.manaraa.com

14

1.6 Thesis Overview

In this thesis, we present methods for reducing ATPG-produced test set size,

involving the addition of extra test logic and new ATPG processes. The rest of the thesis

is organized as follows.

Motivation and the review of previous works for each technique are reported in

Chapter 2. In Chapter 3, we introduce a control point insertion technique that reduces the

ATPG pattern counts and test data volume with a minimized silicon area overhead by

reusing functional flip-flops as drivers of control points [19]. Control points are inserted at

suitable locations that resolve large internal conflicts of ATPG assignments. This helps a

single test pattern to target more faults and reduce the overall pattern count. Since each

control point requires a dedicated driver of an extra flip-flop, we introduce a method to

replace the dedicated drivers by some existing functional flip-flops, while maintaining a

similar functionality.

In Chapter 4, we introduce a new test scheme that reduces ATPG pattern counts by

applying patterns in a test-per-clock manner [20], instead of applying patterns after a

complete scan load as described in Section 1.1.1. Dedicated capture-per-cycle observation

scan chains with observation test points are added to capture additional test results during

shift cycles of scan loading. By leveraging this new scan feature, we can generate more

compact test patterns (also called staggered test patterns) and systematically detect many

additional faults. In this way, fewer patterns are required to achieve the same test coverage

compared to any conventional test-per-scan scheme.

In Chapter 5, we introduce a deterministic two-level compression scheme named

Stellar BIST to address the new challenges of in-system automotive test [21]. This method

can generate effective test stimuli from a small number of stored seeds (also called parent

patterns) through additional hardware, while the stored test patterns are generated and

compressed through a dedicated ATPG process. With a user-specified parameter, this

approach can provide significant trade-offs between on-chip memory usage and total test

www.manaraa.com

15

application time. Finally, a summary of the methods proposed in this thesis and future

research are given in Chapter 6.

www.manaraa.com

16

CHAPTER 2

MOTIVATION AND PREVIOUS WORKS

As discussed in Chapter 1, ATPG tools generate deterministic test patterns to

achieve high fault coverage. To reduce test costs, one has to reduce the number of tests

needed to achieve desired fault coverage defined as the percentage of targeted faults that

are detected by the tests applied to the CUT. If stored pattern tests are used for in-field test,

then effective ways to trade-off pattern counts and memory needed to store test patterns

should be considered. In this thesis we investigate solutions to both these issues.

Methods to reduce test pattern counts can be classified into two classes. The first

one is software or algorithm based that typically use heuristics to improve ATPG

procedures to achieve lower test pattern counts [22], [23], [24], [25], [26], [27], [28], [29],

[30], [31], [32], [33], [34], [35], [36], [37], [38]. Typically, these methods try to maximize

the number of faults detected by a generated test. The second class of procedures insert test

points to reduce pattern counts [39], [40], [41], [44], [46], [47]. Postprocessing may be

used to further reduce pattern counts by eliminating redundant tests in the test sets

generated by the ATPGs [28], [32], [33], [34], [35]. In this thesis we investigate two

methods to use test points to reduce pattern counts. We also investigate a method to

generate tests such that they can be derived from a subset of stored patterns which provides

an effective way to trade off stored pattern counts and test application time.

Next, we review earlier software-based methods to generate compact test sets (in

Section 2.1), and methods for test point insertion (in Section 2.2), as well as methods to

reduce test application time (in Section 2.3), and stored patterns for in-field test (in Section

2.4).

2.1 Software Based Methods to Reduce Pattern Counts

Two approaches have been investigated to derive compact test sets. One is to use

heuristics to guide ATPGs to generate compact test sets and the other is to investigate

www.manaraa.com

17

methods to realize logic circuits that require small test sets to detect modeled faults. In

Section 2.1.1, we review the methods to guide ATPGs to derive small test sets and in

Section 2.1.2, we give a brief review of methods to realize logic circuits that require small

test sets to detect all modeled faults.

2.1.1 Generation of Compact Test Sets

As discussed in Section 1.3, test for a given fault (also called a test cube) can be

generated using the D-algorithm. The generation of test sets can use static or dynamic

compactions, or a combination of both to achieve a small (compact) test set size. Static

compaction methods generate effective test patterns based on a complete test set, either

through the merging of multiple test cubes to form test patterns that can detect many faults,

or through some postprocessing procedures by simulating the test set in a different order

and dropping redundant tests that cannot help detecting any new fault. Dynamic

compaction methods try to incrementally fill the unspecified bits of test cubes in an

intelligent way to create effective test patterns that detect many undetected faults. In this

subsection, we will review some of these test compaction methods that guide ATPGs to

generate compact test sets.

A dynamic and a static compaction method are introduced and compared in [24].

The dynamic compaction procedure gradually fills the unspecified positions of a test vector

(targeting a single fault) to form a test pattern that detects many undetected faults, and the

static compaction method tries to merge compatible test cubes together to form a test

pattern after the generation of a complete test set (targeting all the faults). This paper shows

that dynamic compaction methods may yield better performance, since static compaction

methods require more memory and time to target all the faults. Another method, introduced

in [25], suggests a fast and effective way that gradually generates and merges test cubes

targeting only a set of undetected faults at a time (instead of targeting all the faults at once).

www.manaraa.com

18

COMPACTEST, introduced in [26], suggests several new concepts that can guide

ATPG to generate a more compact test set, such as the fault ordering and the potential

compatible fault list that can be utilized for test generation, a dynamic method to reduce

specified positions of a test vector, and a rotating backtrace method for making ATPG

decisions. Some other methods, introduced in [22], [23], [27], [28], [29], [30], [31], focus

on similar concepts as using fault ordering, compatible faults, or other ATPG decision

guidance to get compact test sets.

After obtaining a complete test set, some of the test patterns can still be redundant

(test patterns with all the detected faults that are already covered by other test patterns).

Therefore, the test set can be further compacted by dropping test patterns that cannot detect

any new fault. Several postprocessing procedures are introduced in [28], [32], [33], [34],

[35]. They use the fault detection profiles from the pattern simulation results to either come

up with certain pattern simulation orders to drop redundant test patterns, or directly get a

minimal test set based on the fault detection information.

2.1.2 Synthesis of Easily Testable Circuits

Typically, test problems are not considered until a design is completed. From a

testing point of view, test aspects can be specified as some of the design criteria at the

design stage, which may lead to a better test solution. It has been suggested in [36] that it

is feasible to synthesize easily testable circuits that require minimal test sets. This paper

suggests a realization of any arbitrary logic function using a Reed-Muller Network of n

variables (as introduced in [37], states that any Boolean function can be implemented by

this network) and shows that it only requires n+4 test vectors to fully test the circuit, which

is also independent of the function that has been realized. Another paper in [38] also

presents that a minimum test set with only 11 test vectors are required to completely test

for all multiple faults of any ripple carry adder, independent of the number of cells.

www.manaraa.com

19

Therefore, if easy-to-test criteria are specified at the design phase, it could be possible to

synthesize circuits with minimal test sets that can be easily obtained.

Another way to modify a design to make it easy-to-test is using test point insertion

techniques, which will be discussed in Section 2.2.

2.2 Test Point Insertion

In this section, we will discuss the motivation for test point insertion and review

some test point insertion (TPI) techniques for different test purposes and present a TPI

technique investigated in this thesis.

2.2.1 Motivation for Test Point Insertion

As discussed in Section 1.4, test points are extra test logic inserted into a design to

gain additional controllability or observability of some internal nodes. This may help detect

some hard-to-detect faults or to control/observe an internal node for some other test

concerns. Since test points also require additional chip area, the most significant task for

TPI is to find a limited number of test point locations that are most effective to achieve

desired test goals. Due to different application purposes, different methodologies of finding

optimal test points may need to be developed.

In Section 2.2.2, we review TPI techniques for testability improvement that helps

detect hard-to-detect faults. In Section 2.2.3, we review TPI techniques proposed to

improve test pattern counts. We give a detailed review of a TPI technique that targets the

reduction of ATPG pattern counts and test data volume, which we also investigated to

improve area overhead required for this method.

2.2.2 Test Point Insertion for Testability Improvement

As discussed in Chapter 1, BIST technique generates pseudo-random test patterns

for self-testing a design. Although BIST has certain advantages, the low detection

probabilities of faults that are pseudo-random-pattern-resistant (also called hard-to-detect)

www.manaraa.com

20

continues to be a problem. To overcome this, the TPI approach is developed for improving

random pattern testability. With the help of test points, random-pattern resistant faults are

rendered random pattern detectable.

To detect random-pattern-resistant or hard-to-detect faults, test points are inserted

at certain nodes of the design to improve testability of targeted faults. Testability can be

improved by improving controllability and/or observability [8]. Controllability is used to

determine the difficulty of setting an internal line to the value 1 or 0, while observability is

used to determine the difficulty of driving a fault-effect from an internal line to a primary

output or a pseudo-primary output (a scan flip-flop).

Several empirical methods for testability measurements have been proposed to

guide test point placement [39], [40], [41], [42], [43], [44]. Circuit testability is estimated

either through exact fault simulation or approximate measures. To avoid the large CPU-

time that fault simulation requires, approximate measures are used. This provides a less

time-consuming way to characterize controllability and observability information without

applying any additional input vectors. The Sandia Controllability/Observability Analysis

Program (SCOAP) [45] is one such measure and an easy-to-compute method for testability

measurement. It can be used to guide ATPG and the placement of test points.

A digital design typically consists of combinational cells (such as AND gates, OR

gates, inverters, etc.), sequential cells (such as flip-flops or latches), and the

interconnections that exist between them. SCOAP [45] defined six metrics to calculate

controllability/observability values. Associated with each node, these measures are as

follows: combinational 0-controllability (CC0), combinational 1-controllability (CC1),

combinational observability (CO), sequential 0-controllability (SC0), sequential 1-

controllability (SC1), and sequential observability (SO). For a combinational node (a node

that is the output of a combinational cell), combinational controllability (CC) is defined as

the minimum effort to justify a 0 or 1 at the node. Likewise, combinational observability

(CO) is defined as the minimum effort to propagate the value on that node to a primary

www.manaraa.com

21

output. Sequential metrics are defined in a similar way for a sequential node that is the

output of a sequential cell.

The controllability and observability of each individual cell is calculated to

determine the difficulty of setting the node to a particular value. The controllability of an

output is calculated by first checking all possible input assignments that achieve the desired

output value, and then taking a minimum value of the sum of the controllability values of

its inputs. The observability of an input of the cell is calculated by the observability of its

output, plus the sum of the controllability of other inputs that sensitize the path to the output

at minimum cost [45]. The calculation for an AND gate is shown in Figure 2.1.

Figure 2.1 Controllability/observability calculation

For an entire digital design, the process of computing controllability and

observability can be divided into two phases [45]. At the beginning of Phase One,

controllability and observability values have not yet been assigned. Combinational

controllability values of primary inputs are initialized to 1, while sequential controllability

values of primary inputs are initialized to 0. All other nodes’ controllability values are

initialized to infinity. During Phase One, controllability values are computed forward from

primary inputs and updated for each node until the numbers stabilize. Observability values

are then computed during Phase Two. At the beginning of Phase Two, observability values

www.manaraa.com

22

for all primary outputs are initialized to 0, and observability values for all other nodes are

initialized to infinity. During Phase Two, observability values are computed backward

from each primary output. Utilizing the controllability values that were calculated during

Phase One, observability values are computed until all observability numbers stabilize.

Controllability and observability are completely assigned by the end of Phase Two. Large

controllability values may indicate nodes that are difficult to justify to specific logic values

while large observability values may indicate nodes that are difficult to observe through

any primary output. This information can be used to guide the TPI process and find

potential test point locations.

Figure 2.2 Test point insertion for testability improvement

As shown in Figure 2.2, according to the controllability and observability measures,

by inserting a control point at a specific node, either 1-controllability or 0-controllability

of the node can be reduced, making it easier to justify the node as well as some forward-

traced nodes to certain logic values. In the meantime, according to Phase Two of the

www.manaraa.com

23

SCOAP process, observability values of certain nodes may also be reduced after the

insertion of control points. Similarly, by adding observation points, observability values of

some nodes can also be reduced, making these nodes easier to be observed.

2.2.3 Test Point Insertion for

Reducing Deterministic Test Patterns

Although testability-based TPI techniques are found to have an incidental decrease

in pattern counts [23], [46], their performance in pattern count reduction is significantly

less predictable. Several methods, introduced in [39], [40], [41], [44], [46], [47], focus on

using test points for the purpose of test compaction. These methods model one or more

aspects that determine the final test pattern count and improve test compaction results with

properly inserted test points. In this subsection, we will discuss the approach proposed in

[47] of using test points to reduce ATPG pattern counts and test data volume by modeling

and resolving conflicts of internal assignments during the ATPG process, which is the

approach that will be further investigated in Chapter 3.

Figure 2.3 Conflict on internal lines

www.manaraa.com

24

To detect as many faults as possible by a single pattern, these faults must become

parallel targets, provided there are no internal assignment conflicts. Given a specific node

in a design, two groups of faults that require opposite values at that node cannot be detected

simultaneously. As shown in Figure 2.3, Gate G1 requires an input value of 1 to propagate

faults in C1, whereas Gate G2 requires an input value of 0 to enable propagation of faults

in C2. Clearly, the immediate conflict between backward implied values at G1 and G2

precludes simultaneous detection of faults in C1 and C2 by any test pattern. In general,

incompatible assignments made by ATPG during fault excitation, forward propagation, or

backward implication lead to conflicts on internal signal lines that may stop the propagation

of effects of many faults. Fortunately, by inserting appropriate control points, these

conflicts can be successfully resolved. Note that faults in C1 and C2 could be targeted

simultaneously, if an AND type control point (for 0-controllability) was added to the input

of Gate G2, or an OR type control point (to achieve 1-controllability) was inserted at the

input of Gate G1.

Figure 2.4 Forward propagation and backward justification

www.manaraa.com

25

The example of Figure 2.3 suggests that fault-blocking mechanisms can be used to

quantify the effect of internal signal assignments on faults detected by one test pattern.

Having a line set to a certain logic value may block forward propagation of several faults

to an observation point. Therefore, the opposite value on that line becomes a necessary

ATPG assignment for the same group of faults. As shown in Figure 2.4, faults in C1 and

C2 require stem x to be set to 0, whereas faults in C3 and C4 require 1s on the inputs of the

respective AND gates. There is a conflict at line x between the forward-implied value of 1

and the backward-implied value of 0.

To determine conflicts such as those illustrated in Figures 2.3 and 2.4, in [47], fault-

blocking information is forward-implied and backward-implied throughout the circuit.

Four metrics are used to characterize the internal signal assignments during the ATPG

process. Given node x, these metrics are defined as follows:

⚫ Bx – the number of faults whose propagation could be halted (blocked), if node x

was set to 0; this is equivalent to the count, in the process of backward implication,

of how many times one needs to set x to 1 to propagate these faults through all

relevant gates,

⚫ bx – the same as above, but to characterize the process of backward implication with

respect to 0,

⚫ Fx – the number of forward-implied 1s on node x, based on earlier backward

implication,

⚫ fx – the number of forward-implied 0s on node x, based on earlier backward

implication.

For a fan-out stem x0 with fan-out branches denoted as xi, the above four metrics

are computed using the following formulae:

Bx0 = Bxi (1)

bx0 = bxi (2)

Fxk = Fx0 + Bxi i ≠ k (3)

www.manaraa.com

26

fxk = fx0 + bxi i ≠ k (4)

In addition, forward-implied F and f values can also be computed for outputs of

different gates, based on F and f values assigned to their inputs. This is done through a

simple structural analysis. F and f values of output node s are determined as follows [47]:

fs = fk

(5a)
fs = Fk

(5b)
Fs = Fk Fs = fk

fs = max {fk}
(6a)

fs = min {Fk}
(6b)

Fs = min {Fk} Fs = max {fk}

fs = min {fk}
(7a)

fs = max {Fk}
(7b)

Fs = max {Fk} Fs = min {fk}

The above formulae correspond to buffer (5a), inverter (5b), AND (6a), NAND

(6b), OR (7a) and NOR (7b) gates. Once forward-implied and backward-implied

information is known, we can measure the degree of conflicts for a given node xk as

follows:

cxk = min {bxk, Fxk} (8)

Cxk = min {Bxk, fxk} (9)

An example of computing metrics (8) and (9) is shown in Figure 2.5. For a stem x,

forward-implied values on each fan-out branch are computed by the forward-implied

values on x and the backward-implied values on other branches.

The test point insertion steps of [47] can be summarized as follows. Following the

observations from conflict analysis, as discussed earlier in this subsection, conflict metrics

are first computed. F and f values are calculated for each gate, starting from the first level.

In the meantime, B and b values are also determined when a fan-out branch is encountered.

After traversing the entire design, conflict values of each node are calculated by equations

(8) and (9). A sorted node list by conflict values can then be collected and used to guide

the test point insertion process. Test points are then inserted at nodes with the largest

conflict values. After the insertion of a test point, related conflict metrics are updated, re-

www.manaraa.com

27

computing backwards and forwards from the branch with the newly-inserted test point.

Since the newly-inserted test point may also affect earlier decisions, it is also necessary to

check whether previously inserted test points have become less effective after the insertion

of a new test point. This is done by removing an early-inserted test point and comparing

the conflict metrics with the current conflict metrics. The whole process will continue, until

a predefined number of test points are inserted.

Figure 2.5 Conflict metrics

Similar to the control points used for improving random pattern testability, conflict-

aware control points are implemented by using dedicated flip-flops (scan cells) driving

additional AND/OR gates. To reduce the area overhead, existing functional flip-flops can

be selected to replace the dedicated flip-flops. In Chapter 3, we will propose a method to

insert conflict-aware control points, while minimizing the area overhead by reusing

functional flip-flops as drivers.

www.manaraa.com

28

2.3 Test-per-clock

In this section, we will discuss the difference between test-per-clock and test-per-

scan and review previous works applying the test-per-clock idea for both random and

deterministic patterns to reduce test application time.

The test application techniques used by most scan-based designs can be classified

as either test-per-scan or test-per-clock. For a test-per-scan procedure, test patterns are

applied only after all the scan registers have been completely loaded. The total test length

for each test pattern is equal to the total shift length plus an additional capture cycle.

However, in a test-per-clock process, test responses are captured every clock cycle while

test vectors are applied. Many test schemes, introduced in [48], [49], [50], [51], [52], [53],

[54], [55], [56], [57], [58], [59], [60], [61], [62], leverage the advantage of test-per-clock

to apply test patterns in shorter time. These earlier methods include build-in logic block

observers (BILBO) [54], a circular self-test path [51], [53], [55], [57], E-BIST [50], [56],

and some techniques applying deterministic test patterns [52], [61], [62].

A tri-modal scan (TMS), discussed in [58], has scan cells partitioned dynamically

to work in three modes as shown in Figure 2.6, acting as either mission memory elements

(M mode scan cells in Figure 2.6), sources of test stimuli (S mode scan cells in Figure 2.6),

or test response compactors (C mode scan cells with XOR gates in Figure 2.6). In the last

two cases, scan cells form the actual scan chains. Scan chains in the stimuli mode resemble

the conventional scan chains in the shift mode. However, test data is applied to the CUT

every clock cycle, and these scan chains do not capture test responses. The latter

functionality is assumed by scan chains in the compaction mode that accumulate test

responses every clock cycle. At the same time, a single bit (per chain) of the resultant

signature is always shifted-out. The remaining scan cells are kept in the mission mode. Test

results propagating through the combinational part of the circuit can also reach the scan

cells in the mission mode. These responses further circulate within the circuit and

eventually reach the observation scan chains during the subsequent clock cycles. Since test

www.manaraa.com

29

patterns are applied every clock cycle, the scheme is time-efficient and makes it possible

to complete a test within much shorter durations than done by conventional schemes.

Figure 2.6 Tri-modal scan architecture [58]

Another approach is introduced in [59]. Unlike the dynamic scan structure used by

TMS [58], this method employs dedicated shadow registers (observation points) with XOR

gates to capture test results during the scan shift to fortuitously detect cell-aware faults with

test patterns generated for stuck-at faults. The shadow flip-flops are directly associated

with scan cells that are capable of observing the largest number of cell-aware faults during

successive shift cycles. Test data of the original test patterns form additional intermediate

test patterns during these shift cycles and test results are captured and accumulated in a

test-per-clock fashion by the test response compactor formed by the shadow registers.

According to the experimental results, this scheme achieves 10% – 45% less cell-aware

test patterns with selected shadowed registers. This method can also be applied to

fortuitously detect stuck-at faults to reduce the test pattern count. Results in [59] show that,

www.manaraa.com

30

with all scan cells shadowed, this method can achieve 30% – 90% test pattern reduction

for designs with highly observable sites (scan cells that can easily capture many fault

effects), and for more complicated industrial designs with limited observation of faults,

this method achieves 5% – 10% test pattern reduction for stuck-at faults after all the scan

cells are shadowed. In Chapter 4, we will present an approach that uses a similar idea as

[59] to insert observation test points to capture fault effects during shift cycles. Different

from [59], we develop a dedicated test generation procedure to produce effective test-per-

clock patterns based on this test scheme.

For a scan-based Logic Built-In Self-Test (LBIST), as introduced in [60], to

maximize the fault detection of intermediate random patterns (test patterns obtained during

scan shift cycles), dedicated observation points are placed at the design's internal node,

where fault effects of a significant group of faults can propagate through. The most suitable

locations for test-per-clock-driven observation points are identified by selecting internal

lines with low observability, which, as discussed in Section 2.2.2, are likely to be the most

preferable propagation paths for a large group of faults. Moreover, control points can also

be inserted to facilitate fault propagation towards the dedicated test-per-clock observation

points. Therefore, many faults are detectable during the shift cycles, while loading LBIST

pseudorandom test patterns.

The principle of test-per-clock can also be used in the context of deterministic test

patterns [61], [62]. As proposed in [61], a test-per-clock scheme is designed to capture test

responses for every clock cycle without mixing with other test patterns. This is done by

using additional multiplexers to control the CUT inputs and internal D flip-flop inputs. The

test-per-clock scan chain input sequences are generated from tests created for each

individual fault. The tests are then applied to the CUT, while test responses are observed

by all primary outputs and scan cells in a test-per-clock manner. Another approach

introduced in [62], a technique that is somewhere between the test-per-scan and test-per-

www.manaraa.com

31

clock schemes, saves shift cycles and generates a compacted test set by reusing overlapping

bits between former test responses and current test vectors.

2.4 Stored Pattern Test

In this section, we will discuss the new test schemes, known as the stored pattern

test, that provide much shorter test application time and better test coverage than

conventional LBIST schemes for in-system test.

2.4.1 LBIST Test Schemes

LBIST is a commonly used technology developed for board, system, and in-field

test. To keep up with the demands of new technologies for a viable in-system test

alternative, LBIST is more often used with on-chip test compression and also employs scan

as its operational baseline. With the mass market driving safety critical systems, the

concept of combining LBIST and test data compression has allowed several test schemes

to rival conventional manufacturing test techniques. For devices destined for long-term

deployment, high test coverage with a very short test application time has become crucial

for their efficient and reliable operations. However, conventional LBIST test schemes may

not be sustainable to meet these high-quality test demands.

To further improve the test quality of LBIST schemes, weighted random patterns

can be used to deal with unacceptably low fault coverage numbers given a feasible pattern

count, [3], [4], [63]. Alternatively, desired stimuli could be obtained by perturbing

pseudorandom vectors [3], [4], [64], [67], [68]. The bit-flipping [68] and its applications

[69], [70] may serve as examples. Unfortunately, these schemes were heavily dependent

on target test sets and had to be substantially resynthesized every time the test pattern

changed, due to logic Engineering Change Orders (ECO). There are other aspects of LBIST

functionality that also need to be worked out. For example, an LBIST scheme should be

less vulnerable to unknown states [71], [72], or it should produce low power test patterns

in a programmable fashion. Relevant solutions [73], [74], however, still handle primarily

www.manaraa.com

32

pseudorandom test data. With these patterns, it becomes increasingly difficult to achieve

the desired test quality, when targeting advanced fault models, not to mention random

pattern resistant failures that need routinely test points to improve test coverage.

2.4.2 Stored Pattern Test

To overcome the bottleneck of test data bandwidth of conventional LBIST and to

meet high test coverage requirements, the advent of hybrid BIST schemes are introduced

by storing deterministic top-up patterns in a compressed form and utilizing the existing

BIST infrastructure to obtain desired test stimuli [23], [75], [76], [77], [78], [79], [80], [81].

If BIST is reused to handle compressed test data, then underlying encoding schemes

typically take advantage of test cubes' low fill rates (specified scan cells to detect a fault).

Solutions in this class include LFSR coding [82], static [83], [84], [85], [86], [87], [88],

[89] and dynamic [7], [90], [91] LFSR reseeding. They are comprehensively surveyed in

[92] and [93]. Interestingly, all test data could ultimately be stored in an on-system

memory, provided that an efficient-enough test compression scheme is deployed. In such

a case, stored deterministic test patterns (also known as stored pattern test) would

eventually become a legitimate alternative for in-system test.

Stored pattern test applies desired test stimuli (for certain test coverage targets) that

can be derived from a minimal set of stored vectors. Typically, applied test patterns are

derived from stored test patterns through bit complements, [5], [6]. In [5], the author

introduces a method called Star-test that selectively flips bits of the parent patterns (seeds)

to obtain the corresponding derivative test patterns for each pattern cluster. Two

applications of Star-test are also introduced in [5], called Star-BIST and Star-ATPG. The

Star-BIST scheme requires complex test logic that makes use of scan order, polarity

between the neighboring scan cells, control points inserted between them, and a waveform

generator. In this manner, the scan cells can behave like a ROM to encode several

deterministic parent patterns. And derivative patterns can then be applied after flipping one

www.manaraa.com

33

or more bits of the parent patterns. Another application of Star-test, called Star-ATPG, is

also introduced in [5]. The Star-ATPG generates parent patterns based on a candidate fault

list obtained through a fault clustering analysis. Besides the simulation of parent patterns,

derivative patterns obtained through deterministic one-bit-flipping or random-bits-flipping

are simulated to detect and drop additional faults. Therefore, it speeds up the ATPG

performance. Another approach, discussed in [6], suggests that stored test set can be

compacted through multiple bit-complements. This method introduces a dedicated

complementation vector used to transform test patterns to other effective test patterns that

may not need to be stored. In this case, fewer test patterns are required to be stored and all

the derivative test patterns can be obtained through bit-complements. Therefore, with

properly-selected complementation vectors, it is possible to further compact the test set

using this method.

Star-EDT, introduced in [94], is a fully deterministic test compression that uses

both the EDT-based compression and a deterministic inversion of decompressed test

patterns to achieve a reduced number of stored patterns and effective derivative patterns.

Instead of flipping specific bits as described in [5] and [6], the Star-EDT determines scan-

slices of tests (scan cells of the same shift time frame) to be complemented. The EDT-

encodable parent patterns are selected among an ATPG-produced test set and the effective

derivative patterns of each test cluster are selected among those modified test patterns, each

with a single complemented scan-slice of the corresponding parent pattern.

In Chapter 5, we will introduce a method called Stellar-BIST. Different from the

selection of stored test patterns among existing test sets, as discussed in [6] and [94], this

approach develops an ATPG-process that directly generates desired parent patterns and

their derivative patterns. And each derivative test pattern is obtained by flipping multiple

scan-slices of the parent test pattern, instead of the single scan-slice complement introduced

in [94].

www.manaraa.com

34

CHAPTER 3

MINIMAL AREA TEST POINTS FOR DETERMINISTIC PATTERNS

In this chapter, we propose a method for reducing area overhead for the conflict-

aware control points, by reusing functional flip-flops to replace the dedicated flip-flops that

have been used as drivers of control points, while maintaining similar pattern count

reduction.

The rest of this chapter is organized as follows. Section 3.1 describes the motivation

for reducing the test point area. Sections 3.2 to 3.4 describe the method of reusing

functional flip-flops as drivers for control points and the necessary verification steps.

Experimental results using this technique on several industrial designs are presented in

Section 3.5, followed by conclusions in Section 3.6.

3.1 Motivation

Conflict-aware test points, described in Chapter 2, facilitate significant reductions

in deterministic test patterns. However, the additional non-functional flip-flops driving the

control points inevitably introduce area overhead. Depending on the number of test points,

the additional area overhead required for dedicated flip-flops could be high. If we could

reuse existing functional flip-flops to replace dedicated drivers, the area overhead for test

point insertion would be considerably reduced. We consider using functional flip-flops as

drivers for control points in this work.

3.2 Reuse of Functional Flip-flops

As discussed in Chapter 2, to resolve a conflict with a large value of conflict c, an

AND type control point needs to be added; whereas to resolve a conflict with a large value

of conflict C, an OR type control point needs to be added to the corresponding node.

The basic structures of control points are shown in Figure 3.1. A single control

point consists of an AND/OR gate to set the control point to the dominating value, another

www.manaraa.com

35

gate to enable it, and a dedicated flip-flop to drive the control point. Dedicated flip-flops

added for test points are finally stitched to scan chains once the test point insertion is

completed. All formulae referred to in this chapter are from Chapter 2.

Figure 3.1 Control point templates

Figure 3.2 shows computations of conflict metrics after the insertion of control

points. Note that FR and fR implied by the dedicated flip-flops are both 0s. The original

functional path of the control point site implies FL and fL. Before adding a control point,

lines L and S are the same net; thus, FS = FL and fS = fL. The original conflicts can be

calculated as CS = min {BS, fS} and cS = min {bS, FS}. According to (6a) and (6b) in Section

2.2.3, after adding an AND control point to force the value of 0, FS of the control point is

reduced to 0 and cS (the “0” conflict) is resolved. Similarly, by adding an OR control point,

we can reduce fS as well as CS (the “1” conflict) of the control point to 0.

www.manaraa.com

36

Figure 3.2 Conflict analysis for dedicated flip-flops

To minimize the area taken up by control points, functional flip-flops can be used

to replace dedicated flip-flops acting as drivers of control points. As shown in Figure 3.3,

control points are now connected to existing functional flip-flops, instead of adding new

scan cells. This may significantly reduce the area required for each control point. However,

functional flip-flops may already have fan-outs. According to formulas (1) – (4) in Section

2.2.3, forward-implied metrics (F and f values) of fan-out branches are determined by

backward-justified (B and b) values occurring on other fan-out branches. Compared to

dedicated flip-flop drivers where F = 0 and f = 0, the values of the same metrics for

functional flip-flop drivers are determined by values of B and b coming from native fan-

out branches. They are no longer equal to 0. In this case, reusing functional flip-flops as

control point drivers may not reduce the conflict degree to 0. Even worse, it may introduce

new conflicts at a connection interfacing a control point with original logic. Although

reusing functional flip-flops may result in higher test pattern counts due to these extra

www.manaraa.com

37

conflicts, we will demonstrate that it is still possible to successfully trade-off silicon area

and test pattern counts, by selecting appropriate driver candidates through a conflict

analysis.

Figure 3.3 Conflict analysis for functional drivers

Figure 3.3 illustrates how conflict metrics can be computed using formulas (1) –

(4). The results indicate that FR = B and fR = b. Therefore, according to (6a), Fs = min {FL,

B} and fs = max {fL, b}. From (8) and (9) in Section 2.2.3, it follows that for the AND type

control point, the degree of new conflict at the control point is equal to cs = min {bs, min

{FL, B}} and Cs = min {Bs, max {fL, b}}. Conflicts due to a new flip-flop connection are

cR = min {bR, B} and CR = min {BR, b}. Similar results can be derived for the OR type

control point. To maintain the control point’s functionality, i.e., to reduce the 1/0 conflict

corresponding to a control point, and to avoid introducing large conflicts, we propose to

www.manaraa.com

38

select the functional flip-flops with a minimal sum of conflicts between its own F and f

values yielded by backward justifications of other fan-out branches with the control point's

B and b values. In this case, we can reduce the original large conflict (conflict 0 for the

AND type control point or conflict 1 for the OR type control point), as well as keep the

other conflicts low. We pick a proper candidate from a set of functional flip-flops that are

“logically” close to the control point bounded by neighborhood criteria. Moreover, since

different circuits may have different conflict degrees, a user-defined threshold is employed

to guide a searching algorithm. Candidates with a large sum of conflicts exceeding this

predefined threshold are not considered, and dedicated flip-flops are used instead. By

varying the threshold, it is possible to trade-off the number of functional flip-flops versus

the number of dedicated flip-flops.

Figure 3.4 Control mode

www.manaraa.com

39

3.3 Flip-flop Verification

When reusing a functional flip-flop as a control point driver, newly added

connections may form a reconvergent fan-out with the flip-flop output branches. We need,

therefore, to verify whether connecting functional flip-flops to control points compromises

fault propagation. To avoid test coverage loss, flip-flops failing this verification procedure

should not be employed as drivers of control points.

Figure 3.5 Propagation mode

During test application, control points work in two modes: a control mode to force

its value, and a propagation mode to allow faults to pass. In this section, we will discuss an

ATPG-based verification for these two modes.

Control points having their own dedicated flip-flops do not experience a

reconvergence problem, when in the control mode. As shown in Figure 3.4(a), where an

www.manaraa.com

40

AND type control point is used as an example, a dedicated flip-flop sets gate CP to 0 in the

control mode, while a functional flip-flop may have a different assignment. Contrary to a

control point driven by its dedicated flip-flop, a functional flip-flop acting as a driver may

feature additional connections, as shown in Figure 3.4(b). In this case, the new connection

added for enabling the control point may have different backward-justified ATPG-

produced values than those of its remaining fan-out branches. As discussed in Section 3.2,

incompatible assignments made to a flip-flop are quantified as conflicts, and they are

already considered during the conflict analysis. This inconsistency will only lead to an

increase in pattern count with no coverage loss. Therefore, it is not necessary to perform

an ATPG-based verification for the reconvergence issue in the control mode.

It is not the case, however, when it comes to the propagation mode. As shown in

Figure 3.5, the driver is set to the non-controlling value, so that faults from the other input

can pass through the control point. Control points with a driver feeding a reconvergent fan-

out may block faults, whose only propagation path goes through the control point. Consider

the AND-type control point. In the propagation mode, the driver is set to 1 to let faults

propagate through the control point’s original path. As shown in the figure, faults whose

only propagation path goes through the control point can be blocked by the value that sets

the top OR gate to its dominating value. In this case, a functional flip-flop that precludes

faults from further propagation cannot be considered as a driver candidate. Consequently,

additional ATPG verification is required to check whether the candidate flip-flop is

blocking any forward fault propagation through the corresponding control point in the

propagation mode.

After running the conflict analysis, the ATPG-based verification is performed by

imposing the non-controlling value on a candidate functional flip-flop. This verification

checks whether the implied value may block faults whose only propagation path goes

through the control point. Clearly, candidate flip-flops passing ATPG verification will not

cause any coverage loss due to the reconvergence problem.

www.manaraa.com

41

3.4 Candidate Flip-flops Search Flow

As discussed in previous sections, the selection of functional flip-flops to act as

control point drivers is done within a certain (and limited) search space. For pre-layout

designs, to avoid long paths from selected functional flip-flops to the control points, we

select a suitable candidate among flip-flops, which are “logically” adjacent to the control

point, while a user-defined threshold limits the total number of flip-flops checked for each

control point.

Figure 3.6 Tracing during locality analysis to find extra candidate flip-flops

Figure 3.6 illustrates a search for the most appropriate flip-flop among a limited

number of functional flip-flops “near” a given control point CP. Starting with the cone of

logic that drives the control point, a breadth-first search is applied to find a limited number

of candidate flip-flops within the cone. If this cone does not contain enough flip-flops, we

gradually enlarge the search space by tracing forward from the control point and then

tracing backward from any further off-path inputs to find more flip-flops. For example (see

www.manaraa.com

42

Figure 3.6), we first check flip-flops inside cone A. Next, we may seek more flip-flops by

visiting cone B, and then cone C, until reaching the threshold.

The combined search flow to select a suitable functional flip-flop to be used as a

driver of a single control point can be summarized as follows (compare Figure 3.7):

1 Start searching for a candidate flip-flop with a minimal conflict sum within a

predefined conflict threshold.

2 Gradually enlarge the search space to find more flip-flops through backward

tracing from any off-path input of the forward path of the control point.

3 Perform ATPG verification to check fault blocking using a non-controlling value

of the control point.

4 Repeat steps 1 – 3, until a predefined number of flip-flops are reached.

5 If no candidate is found, use a dedicated flip-flop to drive the control point.

Figure 3.7 Combined search flow

www.manaraa.com

43

3.5 Experimental Results

We have conducted experiments on 10 large industrial designs with on-chip EDT

compression logic [7]. Table 3.1 includes the characteristics of the circuits, including the

number of gates, the number of scan cells, the number of scan chains, the number of EDT

input and output channels, as well as the baseline stuck-at test coverage obtained with no

test points. For all experiments, observation points are inserted as proposed in [41]. By

setting the conflict threshold to a design-specific value, we can achieve a large fraction of

control points working with functional flip-flops as their drivers. Therefore, by having a

small number of dedicated scan cells to drive control points, we are minimizing the silicon

area occupied by test points. Functional flip-flops deployed as drivers of control points are

selected within their “logical” proximity comprising 100 flip-flops, as described in Section

3.4.

Table 3.1 Circuit characteristics

 Gates Scan cells Scan chains Channels TC [%]

D1 1.19M 72K 400 4, 4 96.95

D2 103K 1K 10 1, 1 97.78

D3 218K 14K 20 1, 1 99.99

D4 2.08M 143K 400 4, 4 99.51

D5 1.32M 52K 220 6, 6 98.13

D6 1.04M 57K 400 4, 4 91.39

D7 3.34M 325K 400 4, 4 96.49

D8 2.60M 154K 1,200 12, 12 91.34

D9 1.69M 86K 400 4, 4 97.82

D10 2.31M 252K 490 10, 10 99.06

www.manaraa.com

44

For the designs given in Table 3.1, test points are inserted using the method

presented in [47] which uses dedicated flip-flops to drive control points and by using

functional flip-flops as drivers of control points as proposed in this chapter. ATPG was run

on the 10 designs. Although our focus is on showing how pattern count reduction depends

on sharing functional flip-flops with control points, observation points are also added to

each design by following the rules presented in [47]. Consequently, Table 3.2 provides

stuck-at test coverage (column TC) after TPI, the total number of control points (CPs), the

total number of observation points (OPs), and the reuse ratio, which is defined as the

percentage of control points using functional flip-flops as drivers. For all test cases, at least

a 90% reuse ratio is achieved. Therefore, for more than 90% of control points, we can

minimize the area, without adding extra scan cells for test point insertion.

Table 3.2 Reuse of functional flip-flops ATPG results

 TC [%] CPs OPs Reuse ratio [%]

D1 96.97 1,364 1,636 99.7

D2 98.78 300 300 90.0

D3 100.00 379 701 91.3

D4 99.55 750 750 95.0

D5 99.42 260 260 94.2

D6 92.11 600 600 97.2

D7 96.52 2,973 3,027 90.4

D8 91.66 770 770 100.0

D9 97.99 944 1,056 95.2

D10 99.70 1,500 1,500 91.3

www.manaraa.com

45

Table 3.3 Pattern counts for dedicated (D) and functional (F) drivers (stuck-at)

Pattern count PC
increase

[%]

Pattern reduction

D F D F

D1 1,628 1,693 4.0 1.89 1.82

D2 4,260 4,588 7.7 2.54 2.36

D3 4,102 4,425 7.9 2.68 2.48

D4 8,744 8,896 1.7 2.75 2.70

D5 24,486 24,881 1.6 1.34 1.32

D6 7,606 7,791 2.4 2.02 1.97

D7 2,590 2,619 1.1 1.36 1.34

D8 6,424 6,486 1.0 3.10 3.07

D9 9,280 9,397 1.3 1.71 1.69

D10 2,033 2,123 4.4 2.16 2.07

Average 7,115 7,289 3.3 2.16 2.08

Table 3.4 Pattern counts for dedicated (D) and functional (F) drivers (transition)

Pattern count PC
increase

[%]

Pattern reduction

D F D F

D1 5,952 4,864 -18.3 2.47 3.03

D2 2,304 2,176 -5.6 3.62 3.83

D3 9,152 8,128 -11.2 3.32 3.74

D4 15,232 15,232 0.0 2.57 2.57

D5 8,704 9,472 8.8 3.24 2.98

D6 8,704 7,872 -9.6 2.10 2.33

D7 4,288 4,544 6.0 1.61 1.52

D8 13,362 13,924 4.2 2.47 2.37

D9 12,992 13,184 1.5 2.00 1.97

D10 832 896 7.7 6.92 6.43

Average 8,152 8,029 -1.6 3.03 3.08

www.manaraa.com

46

Compared to the control points using dedicated flip-flops, reusing functional flip-

flops reduces the total number of scan cells and minimizes the area required by the control

points. As presented in Section 3.2, using existing functional flip-flops may result in

additional conflicts. Hence, replacing dedicated flip-flops by functional flip-flops may

increase the total pattern count. Tables 3.3 and 3.4 show comparisons that address this

problem for both stuck-at faults and transition faults. Here, the pattern counts while using

dedicated (functional) flip-flops are shown under D (F) in Columns 2 and 3, and the

percentage increase in a pattern count, when functional flip-flops are used, is given in the

next column. In the last two columns, we give the factor by which the pattern counts are

reduced, relative to the pattern counts for designs not using control points. The results

indicate that with an average 3.3% increase in pattern count for stuck-at faults, conflict-

aware control points with functional flip-flops as their drivers can achieve a significant

compression during deterministic test pattern generation. Interestingly, for transition faults,

functional drivers reduce the pattern counts for D1, D2, D3, and D6, with an average 4.7%

pattern count increase for other designs.

3.6 Conclusion

In this chapter, we have presented a method to insert conflict-aware control points

using functional flip-flops as drivers. This approach allows the reduction of the silicon area

required by control point test logic. The experimental results on industrial designs show

that a 90% reuse ratio can be achieved under certain criteria. The conflict-aware test points

reusing functional flip-flops can still achieve a significant reduction (2x – 3x) in pattern

count, compared to baseline designs without any control points, similar to the control points

using dedicated flip-flops.

www.manaraa.com

47

CHAPTER 4

STAGGERED ATPG WITH CAPTURE-PER-CYCLE

OBSERVATION TEST POINTS

The test points discussed in Chapters 2 and 3 are capable of resolving large internal

conflicts to achieve the goal of reducing the overall test data volume. This TPI technique

adds additional hardware to each CUT, while test patterns are still generated and applied

using the same test scheme. In this chapter, we will leverage the characteristic of

observation test points (as introduced in Section 2.2) and propose a new staggered test

pattern generation scheme. This method produces deterministic stimuli in a test-per-clock-

based process by using dedicated capture-per-cycle observation test points. We also

introduce a new test generation process to adapt to the new test scheme. Therefore, the

final test set size can be further reduced.

This chapter is organized as follows. Section 4.1 describes the motivation of

deterministic tests-per-clock. Section 4.2 introduces a scan architecture that is used in

conjunction with the proposed staggered ATPG. Section 4.3 presents the staggered test

generation technique. An ATPG-oriented method and a simpler method using fault

propagation is proposed in Section 4.4 for identifying the most suitable locations for

capture-per-cycle observation test points. Experimental results obtained for large industrial

designs are discussed in Section 4.5, and the chapter concludes with Section 4.6.

4.1 Motivation

The idea of test-per-clock, as introduced in Section 2.3, utilizes the “wasted” scan-

shift-cycles to apply additional tests. These additional tests that are applied during shift

cycles can only be effective when the test responses are captured properly. An easy way to

achieve this is having additional observation sources to capture corresponding test results,

so that additional faults can be detected. In this case, for every individual test cycle, tests

www.manaraa.com

48

can be applied to the CUT. Therefore, we may also consider generating proper tests, based

on every clock cycle instead of generating tests for a complete scan.

Figure 4.1 Scan architecture

4.2 Test-per-clock Scan Architecture

In a conventional test-per-scan scheme, the operational rule is to feed serial inputs

of the scan chains with test stimuli and capture test responses through scan chain serial

outputs. All scan cells are typically controlled by a single scan enable signal. Therefore, all

scan chains are functionally indistinguishable, i.e., they all either shift data in and out or

capture test results. In contrast to this paradigm, a test-per-clock architecture adapted in

this work operates as shown in Figure 4.1. The majority of memory elements form

conventional scan chains (white blocks in the figure), i.e., they operate either in the shift

mode (with the asserted scan enable) or in the capture mode. Scan cells serving the

observation points (the grey boxes in Figure 4.1) are arranged into separate scan chains

www.manaraa.com

49

operating exclusively in the compaction (capture) mode. These compaction chains

accumulate test responses, using XOR gates interspaced between their successive cells. A

scan cell associated with a single observation point is shown in Figure 4.2. The global test

point enable (EN) signal activates observation points in the test mode, and disables them

in the mission mode. Test results received from CUT (input D) are XOR-ed with data

provided by another scan cell, thus incorporating shift and capture functionality within a

single clock cycle. Although the capture-per-cycle observation test points may only work

in the compaction mode, it is possible to modify them for the sake of scan chain integrity

test, as shown in [58].

Figure 4.2 Observation point

Once a test is launched, test data are serially fed into the conventional scan chains

through the scan serial inputs, while the chains’ content drives the CUT. Note that after

every single shift cycle there is a test pattern presented to the CUT. Test responses

corresponding to these patterns are captured and accumulated by the observation test point

chains every single shift cycle while regular scan cells are still operating in the shift mode

(compare with Figure 4.1). As a result, it becomes possible to stagger ATPG patterns based

on this functionality. The key idea of our ATPG is to deploy the capture-per-cycle

D
SI SO

Q

D

EN

www.manaraa.com

50

observation points to record data, while regular scan cells are still being loaded. It will also

generate more compact test patterns by utilizing the subsequent vectors gradually filling

the regular scan chains.

4.3 Staggered ATPG

A conventional ATPG framework typically comprises the actual test pattern

generation and fault simulation. First, a test cube, i.e., a group of specified scan cells, is

produced to detect a single fault. A test cube is generated to activate the fault effect at the

fault site, as well as to sensitize a propagation path towards an observable detection gate

(scan cells or POs). Successive test cubes are kept in a buffer, where, at some point, they

become subject to a cube merging process. Depending on specified bits, test cubes with no

conflicting assignments are considered compatible and can be merged to form a single test

pattern (Figure 4.3). ATPG continues test generation and cube merging until a certain

number of patterns are created. Fault simulation usually follows to determine all faults

detected by the newly formed tests. It is clear that ATPG iterates, until all faults are

covered. With the capture-per-cycle observation test points allowing tests every clock

cycle, the above test-per-scan-based ATPG can be modified to generate staggered test

patterns that fully leverage the test-per-clock scan design of Section 4.2.

Figure 4.3 Compatible test cubes

1 X 0 X X 1

0 0 1 1 X X

incompatible

X 0 0 1 1 X

1 X 0 X X 1

1 0 0 1 1 1

www.manaraa.com

51

Figure 4.4 Scan specifications of test cubes during shift cycles

4.3.1 Test Cube Merging

As mentioned earlier, a test pattern can be obtained as a superposition of several

compatible test cubes. With the test-per-scan paradigm in place, conflicting test cubes

cannot be merged to form a single pattern. However, the test-per-clock approach provides

an opportunity to merge even conflicting test cubes. Consider test cubes t1 and t2 shown in

Figure 4.4. It appears that loading vector t2 suffices to apply test pattern t1 (it occurs at shift

cycle c4), provided the corresponding specified values (grey boxes) in both vectors are the

same. In this case, having observation points that capture test results every clock cycle, one

can generate staggered patterns based on mutually shifted test cubes, without

compromising the fault coverage. Figure 4.5 is another example where one can make

incompatible test cubes mergeable. This is achieved by shifting (adjusting) cubes along

scan chains to form a more compact pattern, which activates all specified values of every

initial test cube in a test-per-cycle manner. For example, a test pattern formed in Figure 4.5

will apply successive specified bits as follows:

• bits A during the fifth shift cycle,

• bits B during the sixth cycle,

www.manaraa.com

52

• bits C during the seventh cycle, and

• bit D also during the seventh cycle.

Figure 4.5 Test cube merging

If every potential fault effect can be recorded by at least one capture-per-cycle

observation test point, this type of shift-and-merge process can be performed to further

decrease the total number of required test patterns that need to be applied. Clearly, this

approach is also well positioned to reduce the effective number of ATPG-produced test

cubes. This is because many fortuitous detections are likely to be recorded by fault

simulation of staggered patterns, as discussed below.

The test cube merging integrated with the staggered ATPG can be summarized as

follows:

1. First, create an empty merge array M.

2. Merge test cube t with M, provided that it is compatible with the content of M.

www.manaraa.com

53

3. If t is incompatible with M, check whether fault effects caused by t can be

recorded by any observation point.

4. If so, inspect compatibility of t with M, by shifting t towards the scan tail end

until a shifted replica of t becomes compatible with M (then merge t with M); if all shift

positions have been unsuccessfully tried, then skip t.

5. After traversing the entire test cube buffer, generate a pattern based on the values

gathered in M.

6. Reset M and repeat these steps until all relevant test cubes are examined.

Before the above procedure is carried out, it is possible to presort the test cube

buffer, so that test cubes targeting faults that do not propagate to any observation points

(faulty effects are exclusively captured by regular scan cells) are examined prior to the

remaining test cubes. Note that these test cubes cannot be shifted along scan chains, since

their capture cycles occur only at particular time frames following completion of the scan

upload phase. Test cubes that propagate errors to observation points having a much more

flexible capture principle (virtually every intervening scan shift cycle may record erroneous

responses) can be positioned at any suitable time frame within the scan uploading

sequence. As one may expect, experimental evidence indicates that this approach provides

better results in terms of test cube mergeability. It is also worth noting that the test cube

buffer is gradually refilled as ATPG keeps adding new test cubes for successive faults.

Therefore, the procedure presented is fully compatible with the conventional ATPG flow.

4.3.2 Fault Simulation

Test cubes typically target only a small number of faults while the remaining ones

are detected by simulation. After test cube merging, all bits that remain unspecified are

also filled with certain values, such as, for example, pseudorandom ones. Unlike a

conventional test-per-scan ATPG using a single fault simulation pass per pattern, a

staggered ATPG process requires several fault-simulation runs to analyze every

www.manaraa.com

54

intermediate stimulus generated during every shift cycle, and to drop all faults detected this

way. In other words, besides a fault simulation pass corresponding to the original test

pattern, additional (staggered) test patterns are formed and fault simulated with cell

constraints disabling regular scan cell-based observation sites. This is done by shifting the

current pattern towards the scan front end, i.e., in the opposite direction of the test cube

compatibility check. The total number of staggered patterns depends on the scan size. It is

expected that, in addition to faults targeted by the original pattern and its merged

derivatives, more faults can be detected by simulation, compared to a conventional test-

per-scan ATPG. In summary, the proposed staggered ATPG flow consists of the following

steps:

1. Generate test cubes for selected faults.

2. Generate a derivate test pattern by first merging the test cubes targeting faults

that propagate to regular scan cells only, and then the remaining test cubes; fill all

unspecified bits.

3. Fault simulate the original test pattern.

4. Fault simulate staggered patterns, by appropriately shifting the original test

pattern.

5. Repeat steps 1 – 4, until no faults remain on a fault list.

Since a staggered test pattern is formed by scan cells' values of shifted test patterns

plus some of the capture data of previous test patterns of corresponding scan cells. It is

worth pointing out that staggered test patterns would mainly rely on their deterministic

parts (shifted versions of originally generated bits) to detect faults. Although previously

captured data also form parts of the staggered patterns and may detect some faults during

simulation, these data are highly order-dependent, and it also has been found that additional

faults detected by the captured data are not having a significant role in determining the

final pattern count. Therefore, the simulation order of the test patterns is not considered as

www.manaraa.com

55

a factor to our staggered tests, and the captured data parts can be ignored (treated as

unknowns) during the simulation.

4.3.3 Staggered ATPG with EDT

When on-chip test data compression (EDT) is enabled, ATPG-generated test cubes

must pass an additional compression check, before forming a test pattern. This check is

performed during test cube merging to determine whether the merged test can be encoded.

Otherwise, the current test cube must be skipped, even though it has no conflict

specifications with the merge array.

The proposed staggered ATPG can be easily adopted to work with the additional

EDT compression check, by performing the check whenever a generated test cube or a

shifted test cube version is being merged to the merge array. Although this may lead to a

degradation in the performance of test cube merging as compared to a staggered ATPG

without EDT, our staggered ATPG can provide additional flexibility to shift-and-merge a

test cube in a situation where a merged cube cannot be compressed.

4.4 Observation Test Points Selection

A proper selection of capture-per-cycle observation sites is essential for successful

application of the staggered test generation scheme presented in the previous section. They

can be either picked to improve the cube merging efficiency, or to increase the number of

faults detected by fault simulation.

A given test cube excites a fault and propagates the fault effect to at least one

observation point, including regular scan cells or primary outputs. Any circuit’s internal

node that has been assigned values, so that the fault effect can propagate through, is called

a detection gate of the corresponding test cube. As shown in Section 4.3 (see also Figure

5.5), not every test cube can be subject to the shift-and-merge procedure. Only test cubes

with detection gates being observable during shift cycles can be adjusted along scan chains

for compatibility checks. In other words, only test cubes activating several dedicated

www.manaraa.com

56

capture-per-cycle observation points can have multiple (flexible) locations in the merge

array. Clearly, the more test cubes with detection gates acting as dedicated observation

points, the better test cube merging results one may expect during the staggered test

generation.

Once the merging of compatible test cubes is completed, we assume that all the

remaining unspecified bits are filled with pseudorandom values. The resultant fully

specified patterns are fault simulated and all detected faults are dropped. This includes

faults detected by staggered test patterns as well as faults fortuitously covered by a fully

specified pattern. It is worth noting that test patterns used in this process are formed by all

shifted replicas of original patterns combined with captured test responses of former test

patterns. Clearly, the capture-per-cycle observation test points need to be placed at proper

locations to capture faults playing a significant role in determining the final pattern count

of the staggered ATPG.

4.4.1 Observation Test Points Selection

Using ATPG-detection

In the early stages of our experiments, we used two test point insertion techniques

[41], [95], which have already proven to be successful in reducing test pattern counts and

test application time. Although making those test points capture-per-cycle observation sites

may allow one to detect many faults, the very same observation points are seldom

sensitized by a reasonable number of test cubes. Consequently, the method that has

demonstrated its superiority in a convincing manner, which seemed to offer a practical and

economical way to get sufficient coverage of randomly-detectable faults, employs regular

scan cells. They were found to be good observation sites for both test cube generation and

fault detection. They can also serve as the capture-per-cycle observation test points for the

staggered test patterns.

www.manaraa.com

57

Figure 4.6 Observation points insertion

We deploy an approach similar to that of [59], by inserting observation points

directly at the inputs of certain regular scan cells to capture test results that otherwise would

be lost, due to the scan shift mode separating the scan cells from a combinational part of a

design (see Figure 4.6). The same method avoids the risk of having observation points

inserted at the internal nodes of the design’s functional paths. The candidate scan cells are

selected based on fault detection profiles obtained by counting how many target faults are

observed (and thus detected) by every individual scan cell during a baseline (reference)

ATPG run. Although the staggered ATPG may behave differently, this information can

still represent the likelihood of fault detection with respect to every individual scan cell.

Moreover, additional faults may propagate through sensitized paths set by the test cubes

towards scan cells that are likely to be reached. Note that linking observation points with

www.manaraa.com

58

scan cells having the highest fault detection counts (targeted by test cubes), makes several

test cubes "flexible". Otherwise, we cannot shift and merge test cubes, since the fault-effect

targeted by the test cube cannot be captured by any observation point. Because of silicon

area constraints, we only select a limited number of scan cells (approximately 1% – 2% of

a design's total number of scan cells) with the largest fault detection counts. Observation

test points described in Section 4.2 are inserted at these scan cell inputs.

4.4.2 Observation Test Points Selection

Using Fault-propagation

Observation test points selection, based on the ATPG-detection-profile, requires a

complete reference (baseline) ATPG run to determine the scan cells with good test cube

detection that is based on test generation information recorded by the ATPG tool. It may

not be accessed easily from the user-side. Therefore, this test points selection approach can

be time-consuming and tool dependent. We propose a simpler optional approach to select

locations for the observation test points using a fault-propagation analysis.

Figure 4.7 Fault propagation analysis

www.manaraa.com

59

With the same idea of selecting suitable scan cells that can cover more test cubes,

as well as detect additional faults during staggered pattern simulation, instead of learning

the information from a complete ATPG run, we can perform a structural tracing based on

the fault list to obtain a fault propagation profile for the scan cells. The propagation analysis

is shown in Figure 4.7 and can be described as follows:

1. For each fault in the fault list, we assign a value “1” at the fault site for counting

the forward propagation of the fault.

2. We divide the value evenly on every fan-out stem encountered (modeling random

fault propagation decisions with equal probabilities) and propagate the fraction towards

every fan-out branch. The calculation for a total number of F faults propagating through a

fanout stem with n fanout branches is shown in Figure 4.7(a) and Figure 4.7(b) shows an

example of the fault propagation analysis.

3. We record the fault propagation value received by each scan cell.

4. After traversing the entire design, we sort the scan cell list by the fault

propagation value and select a predefined number of scan cells with highest fault

propagation values as locations of our observation test points.

Note that, the fault list used for this approach is not the entire fault list of a design.

We observe that for most designs, a large proportion of the faults are some easy-to-detect

faults that can be detected by the simulation of a few test patterns at the beginning of an

ATPG process. These faults act like “noise” to our fault propagation analysis and detecting

these faults by our observation test points would not help to reduce the final pattern count.

Therefore, we prune the fault list by removing those faults detected at the early-stage of an

ATPG process and use the reduced fault list (also called as tail-end fault list) for our

observation test points selection. Although obtaining such a tail-end fault list may still

require an ATPG run, this ATPG process normally stops at an early stage and has a much

shorter run time than a complete ATPG run.

www.manaraa.com

60

4.5 Experimental Results

The performance of the staggered ATPG working with the capture-per-cycle

observation test points, has been verified experimentally on 10 large industrial designs with

on-chip EDT-based test compression [7]. They represent different design styles, different

scan methodologies, and mirror the latest technology nodes. The basic data regarding these

circuits, such as the number of gates, the fault population, the number of scan cells, the

number of EDT channels, the number of chains, and the length of the longest scan chain

are listed in Table 4.1. Although longer scan chains may help to get more staggered test

patterns, we only choose reasonable scan chain length for each test case.

Table 4.1 Circuit characteristics

 Gates Faults Scan cells Channels Chains
Chain
length

D1 1.69M 4.99M 87K 4 400 219

D2 1.19M 4.48M 72K 16 400 189

D3 2.08M 7.17M 143K 4 400 371

D5 1.04M 1.90M 57K 4 400 146

D6 1.38M 3.78M 93K 10 169 555

D7 2.53M 4.93M 206K 10 374 558

D8 1.09M 2.94M 75K 10 141 546

D9 4.04M 8.76M 199K 10 364 548

D10 3.35M 15.15M 331K 4 400 829

The experimental results for stuck-at faults are presented in Table 4.2. Columns

“Pattern count” gather the key data for both examined scenarios – the number of ATPG-

produced test cubes in line with the conventional scenario and its staggered counterpart. In

all experiments reported in this section, the staggered ATPG results were obtained after

inserting observation test points, as discussed in Section 4.4, i.e., by using the method

www.manaraa.com

61

working with the fault propagation profile, and the fault list is pruned to a 90% tail-end

fault list (removing the first 90% of the faults that are detected by a few patterns in the

early stage of an ATPG run). The total number of test points is kept to below 2% of the

entire scan cell population (see column “Observation points” of the table). This percentage

is an industry-wide accepted standard. As can be seen, the staggered ATPG yields a visible

pattern count reduction in all examined cases. It varies from 1.2x to 3.0x for otherwise

similar test coverage numbers provided by the conventional ATPG.

Table 4.2 Experimental results (stuck-at faults)

Conventional ATPG Pattern
reduction

(x)

Staggered ATPG with OPs

Coverage
[%]

Pattern
count

OPs
Coverage

[%]
Pattern
count

D1 95.89 11,523 2.98 1,600 95.89 3,870

D2 96.45 2,010 1.46 1,400 96.46 1,377

D3 97.24 7,299 1.69 2,800 97.26 4,325

D4 92.92 8,697 1.97 1,100 92.92 4,422

D5 97.68 8,235 1.58 1,800 97.68 5,228

D6 97.64 1,838 1.85 4,000 97.64 993

D7 95.64 2,127 2.05 1,500 95.65 1,036

D8 99.29 1,002 1.17 4,000 99.29 860

D9 96.54 3,129 1.86 6,000 96.54 1,682

D10 99.86 1,149 1.39 1,500 99.86 824

Average 96.92 4,701 1.80 2,570 96.92 2,462

www.manaraa.com

62

Table 4.3 Experimental results (transition faults)

Conventional ATPG Pattern
reduction

(x)

Staggered ATPG with OPs

Coverage
[%]

Pattern
count

OPs
Coverage

[%]
Pattern
count

D1 91.22 38,493 5.68 1,600 91.23 6,779

D2 94.31 5,090 1.24 1,400 94.34 4,099

D3 91.87 16,473 1.49 2,800 91.95 11,042

D4 89.29 17,085 2.05 1,100 89.31 8,326

D5 94.32 21,132 1.68 1,800 94.32 12,566

D6 94.91 2,210 1.97 4,000 94.94 1,120

D7 92.64 3,368 3.61 1,500 92.74 932

D8 95.24 1,417 1.28 4,000 95.25 1,104

D9 95.78 10,528 2.17 6,000 95.79 4,859

D10 98.79 5,471 1.50 1,500 98.80 3,639

Average 93.84 12,127 2.27 2,570 93.87 5,447

In Table 4.3, we present the experimental results for transition faults for the same

test cases with the same observation test points we used for stuck-at faults in Table 4.2. We

may consider the scan cells' data at every two adjacent shift cycles as a pair of launch-and-

capture tests for the two-cycle transition test, as introduced in Section 1.2.2. In this case,

we can apply our staggered ATPG to two-cycle tests, like transition faults, by treating the

scan shift data at every clock cycle as an individual LOS test. Although handling the at-

speed application of transition patterns can be a difficult task, by applying the idea of

staggered ATPG, we can get a good pattern count reduction (an average of 2.27x for

transition faults shown in Table 4.3). And this may lead to the test generation of staggered

two-cycle test patterns for stuck-open faults, which require two test patterns that do not

need to be applied at-speed. It may also be possible to gain some “free” test coverage for

these faults that require two-cycle test patterns, during the test application of staggered test

patterns that are generated only for stuck-at faults.

www.manaraa.com

63

It is worth noting that fault simulation used in the experiments does not account for

an unlikely event of aliasing that may occur when fault effects are masked within scan

chains driven by the observation test points. The likelihood of such an event is fortunately

extremely small [96], since these scan chains form finite memory devices, where after

several clock cycles (depending on a fault injection site) an error is shifted out. Moreover,

missed faults remain ATPG targets.

4.6 Conclusion

In this chapter, we present a staggered ATPG working synergistically with the

capture-per-cycle observation test points. This approach generates highly mergeable

deterministic test patterns and detects many additional faults through staggered pattern

fault simulation. The observation test points are inserted at the scan cell inputs based on

the fault propagation profiles. This process has a minimum impact on a design, compared

to other test point insertion techniques. At the same time, test responses captured every

clock cycle by means of the observation points visibly improving the fault observability.

Compared to the method introduced in [59], our approach develops a constrained ATPG

that produces effective test-per-clock patterns and requires fewer observation points (no

more than 2% of the design’s total scan cell count), to achieve good test pattern reduction.

Experimental results obtained for large industrial designs demonstrate – on average – a

1.8x pattern count reduction for stuck-at patterns while preserving the original fault

coverage and may also be applicable to two-cycle patterns such as transition faults.

www.manaraa.com

64

CHAPTER 5

DETERMINISTIC STELLAR BIST FOR IN-SYSTEM TEST

Both the TPI technique introduced in Chapter 3 and the staggered ATPG presented

in Chapter 4 focus on reducing the test set size for ATPG-produced deterministic patterns.

However, pseudorandom patterns still play a significant role for in-system test. As it is

becoming increasingly difficult for conventional test solutions that handle pseudorandom

patterns to achieve high test quality for advanced in-system test, these pseudorandom-

pattern-based solutions can be replaced by the stored pattern test method, by obtaining

desired test stimuli through stored deterministic test patterns, and thus it is important to

produce a minimal but effective test set for stored pattern test solutions.

In this chapter, we propose the Stellar BIST approach. While it inherits some

underlying principles of its predecessors [5], [94], including primarily a concept of

deterministic parents and their derivatives, the new scheme, in vivid contrast to the earlier

techniques, produces derivatives of a given encodable parent pattern, by complementing

its bit slices several times rather than just once, as done in [94], during a single test pattern

application. An additional mechanism skews multiple complements to enrich population

of patterns. As a result, the scheme offers flexible trade-offs between test application time

and test data volume on a scale that is not matched in earlier test data compression schemes.

Consequently, Stellar BIST outperforms the state-of-the-art on-chip test compression

solutions in terms of processing time needed to arrive with the required test cubes, the

corresponding fault crediting results, and eventually compressed test patterns.

This chapter is organized as follows. In Section 5.1, we introduce the predecessor

of this work and the basic principle of test clusters used in our work. The new Stellar BIST

test scheme and the implementation flow are proposed in Sections 5.2 and 5.3.

Experimental results are discussed in Section 5.4, and conclusions are given in Section 5.5.

www.manaraa.com

65

Figure 5.1 STAR-EDT architecture [94]

5.1 STAR-EDT Architecture

The proposed test solution of this chapter can be considered as an evolutionary step,

that builds on the Star-EDT scheme [94] discussed in detail in this section for the sake of

reference. A test set produced within this framework, is comprised of test vector clusters.

Each cluster consists of a single ATPG-produced and EDT-encodable parent pattern and

several children derived from the parent, by complementing all bits of a scan shift cycle.

A careful selection of these cycles may produce a group of valuable stimuli. These vectors,

due to a slight departure from the original parent sequence, detect many faults that

otherwise would need to be targeted separately.

www.manaraa.com

66

Figure 5.1 sketches the Star-EDT architecture. An n-bit ring generator and a phase

shifter make up a continuous flow sequential decompressor (as introduced in Section

1.1.3). The ring generator outputs can be inverted by means of additional XOR gates

controlled by a single complement signal. Since the phase shifter feeds every scan chain

through a 3-input XOR gate [7], inverting all phase shifter inputs complements all its

outputs, i.e., it causes all bits of a given cycle to flip. Whenever the content of a flip cycle

register matches a scan shift counter (Figure 5.1), a Star-EDT controller asserts the

complement signal for a single cycle period. This match only occurs, if the resultant test

pattern can detect additional faults. Hence, parent patterns are assigned lists of effective

cycles, so that the controller can apply every parent pattern repeatedly, each time

complementing – once per pattern application – all bits of a single shift cycle. A seed

repeats register stores the number of repetitions of the same parent pattern. Both – the flip

cycle and the seed repeats registers – receive new content from a list of effective cycles

kept in the cycle lists memory.

As an example, consider seed s that yields a parent pattern p. Let pa, pb, and pc be

derivatives of p obtained by complementing all scan cells of p for time frames a, b, and c,

respectively. In this case, the seeds memory stores seed s, while the cycle lists memory

contains the binary-coded values of a, b, and c. The controller starts by disabling the

complement signal and loading scan chains with the original pattern p. Next, the value of

a is loaded to the flip cycle register, seed s is decompressed again, and the resultant test

pattern pa is applied to a circuit. The same is repeated for b and c. The whole procedure

then continues for other seeds.

5.2 Stellar BIST Test Scheme

There are two findings that our solution is based on. First, certain clusters of test

vectors can detect many related faults. A cluster typically consists of a parent pattern and

several children vectors derived from it through simple transformations. Consider a single

www.manaraa.com

67

test pattern that detects stuck-at-0 and stuck-at-1 faults at the outputs of a circuit as shown

in Figure 5.2. This test sets all inputs of an AND super-gate to 1 and all inputs of an OR

super-gate to 0 (a super-gate is a structural implication abstract representing a circuit block

whose functionality is equivalent to an AND/OR gate). Now, some of the transformed

patterns that detect successive stuck-at-1 and stuck-at-0 faults at the same inputs are

illustrated at the bottom of the figure. Clearly, the original test vector is a good parent

pattern, since it allows one to derive additional tests through systematic (every eight inputs

in this example) bit flipping of its respective components.

Figure 5.2 Test clusters with multiple complements

It is useful to also consider a circuit that is depicted in Figure 5.3. The first pattern

detects a stuck-at-0 fault on the output of the super-gate comprising two fan-out-free

regions (FFRs) made of AND gates. As can be seen, this pattern is a suitable choice, as a

www.manaraa.com

68

parent vector for both FFRs. Derivates of the parent are obtained by complementing any

of its input bits. This allows the detection of all stuck-at-1 faults at the inputs of the super-

gate constructed through multiple FFRs. In the meantime, other bits of this vector can serve

as additional flipping choices, that potentially detect some other faults without blocking

the observation of those already-activated faults.

Figure 5.3 Parent pattern and its derivatives

www.manaraa.com

69

Figure 5.4 Stellar BIST test cluster

It also appears that typically a very few scan chains host specified bits of a test

cube. Although this may depend on a scan chain stitching method and the resultant scan

architecture, since forming scan chains is guided by a design layout as well as clock and

www.manaraa.com

70

power distribution networks, it nevertheless turns out to be the case across many industrial

designs, as reported in [94].

As is the case with Star-EDT [94], test patterns employed by Stellar BIST comprise

clusters of vectors. Each cluster consists of a single encodable ATPG-produced parent

pattern and several children patterns derived from the parent. What contrasts the new

scheme with the previous approach, is a method to create all parent’s derivatives. Instead

of complementing bits of just a single scan shift cycle, Stellar BIST complements bits every

k shift clock cycles during a single test pattern application. This new approach has been

fostered by observations, like those shown in Figures 5.2 and 5.3. Therefore, if k = 32, then

the first child pattern is obtained by inverting bits belonging to slices (time frames) 0, 32,

64, and so forth. Subsequently, the second child pattern is generated by inverting bit slices

1, 33, 65, etc. The next patterns are obtained in a similar manner by having complemented

bit slices beginning with shift cycles 2, 3, all the way to 31. However, some of these

patterns may not be able to detect any new faults not yet covered. These test patterns are

simply skipped. Given a parent pattern, the resultant cluster of patterns is illustrated in

Figure 5.4. If k is chosen to be a power of 2, then it eases the design constraints, as shown

in the next paragraph. It is worth observing that having specified bits in a few scan chains

and complementing bits of time frames that follow the pattern of Figure 5.2, will most

likely cause only target specified bits of a test cube to be affected.

Figure 5.5 is a block diagram of Stellar BIST logic. A CPU, ATE, or any other

appropriate on-chip device or a device external to the chip but part of the system, may store

test data used to control this circuitry. A test set is represented by a clock-between-

complements (CBC) vector and test pattern clusters. This CBC vector defines the value k

of a distance between successive time frames being complemented. Since the content of

the CBC register is used to gate a down counter producing the actual complement signal,

k is binary-coded as 2d - 1, where d = log2k. For example, an 8-bit CBC register indicating

that the complements are done every k = 16 shift cycles, assumes the form 00001111. Every

www.manaraa.com

71

pattern cluster, in turn, comprises an encoded parent pattern (seed) and a binary vector,

indicating which derivatives of the parent test are deployed. If only derivatives 1, 4, 5, and

10 should be produced for k = 16, then the child selection vector becomes equal to

0000010000110010, i.e., with bits b1, b4, b5, and b10 asserted (the least significant bit is on

the right-hand side).

Figure 5.5 Stellar BIST architecture

www.manaraa.com

72

The initial offset register is uploaded based on the content of the child selection

vector in such a way that if bit b of this vector is asserted, b = 0, 1, ..., k - 1, then the register

gets the binary-coded value of b. The initial offset is subsequently used to initialize a down

counter, which works synchronously with the scan shift clock. By observing the counter

and detecting the all-0 sequence on its least significant d bits (determined by the CBC

value, as discussed in the previous paragraph) one can decide when to yield the

complement signal. For n-bit registers, this is achieved by n NAND gates whose outputs’

product is finally delivered by an n-input AND gate.

Given the main components of the Stellar BIST controller, the application of a

single pattern cluster proceeds as follows. After applying the original parent pattern (with

the complement signal disabled) and setting up the CBC register, whose bits indicate which

part of the down counter is taken into account, the CPU attempts to load the initial offset

register, which is subsequently used to initialize the down counter. Let the offset be set to

3. A very few first states of the counter will, therefore, be the following: 3, 2, 1, 0 (here the

complement signal is going to be asserted), 2n - 1, 2n - 2, and so forth. Once the least

significant d bits become the all-0 vector again, the next complement signal is delivered.

Note that all complements are phase-shifted with respect to the first scan shift clock pulse

by three cycles in this case. Once the entire child pattern is applied, the initial offset register

is reloaded with a phase shift corresponding to the next valuable child pattern, and the

process repeats with the parent pattern seed circulating within the parent seed register, until

all the desired child patterns are generated. This is now the time to apply the next parent

pattern with no complements, and then its derivatives, as described above. The former is

done through a combination of reloading the parent seed register and disabling the

complement wire driven by the AND gate.

www.manaraa.com

73

5.3 Implementation Flow

The degree of test data compression attainable by Stellar BIST is a result of storing

only parent pattern seeds and coordinates of the associated flip cycles. It allows the

placement of all relevant test data on a chip. This makes the approach compatible with

deterministic BIST. In the following paragraph, we present a basic test flow that results in

the highest compression ratios, the most aggressive test coverage ramp-ups, and the most

efficient usage of test memories.

A preprocessing step of our test flow consists of a circuit structural analysis. It

identifies all super-gates (discussed in Section 5.1) within the design and the fan-out free

regions (FFRs) that they belong to. Furthermore, SCOAP testability measures (as

introduced in Section 2.2.2) are computed and recorded. A complete set of deterministic

test patterns is subsequently created by running ATPG. This central step is essentially a

framework that produces and verifies successive parent patterns and their derivatives

iteratively, a given number of parents at a time. Typically, a single and compressible parent

pattern is going to be a result of merging of ATPG-produced test cubes obtained for

properly selected faults. The fault selection procedure randomly picks a fault f from the

entire fault list. However, f usually does not become the direct ATPG target. Instead of f, a

fault at the output of a super-gate that hosts f is selected. As a result, there is a better chance

of getting the most suitable parent pattern that can subsequently be deployed to yield

derivative test patterns detecting all target faults, within a super-gate or the corresponding

FFR (compare Figure 5.3). Moreover, the SCOAP values recorded earlier can also be used

to guide the selection process, by choosing a fault with the highest sum of controllability

and observability metrics within FFR hosting f. Every ATPG-produced stimulus now

becomes a kernel of a test cluster also comprising its children patterns, obtained due to

multiple complements of the parent pattern by using a user-defined period between

successive complements, as detailed in Section 5.2.

www.manaraa.com

74

Once a given number of parent patterns are generated, the corresponding test

clusters are now individually fault simulated with the fault dropping enabled. Note that this

process is significantly less CPU-intensive than the previous approach of [94], since

derived patterns are fairly restrained, and their number can easily be controlled by a user

(setting a proper CBC value). Moreover, every cluster is further revised in such a way that

only effective child patterns, i.e., those that detect some faults, are retained. As a result,

every parent pattern is now assigned a binary-coded child selection vector, and the original

parent patterns are recorded as seeds. The procedure presented above is repeated, until the

complete test coverage target is reached.

In order to further reduce the total number of test patterns, a pattern reordering

procedure is applied to all effective patterns (for both parents and children) obtained in the

previous steps. These test patterns are first sorted in the descending order, with respect to

the number of faults they detect, based on information captured during a simulation

process). In the following steps, a fault dropping simulation repeatedly determines faults

detected by successive patterns, beginning with a test pattern that features the largest fault

detection count. Therefore, this phase basically implements a reverse order fault simulation

that reveals faults not yet detected by the previously examined patterns. It also updates

child selection vectors for those clusters whose members were removed. It is worth noting

that the entire test clusters may be deleted during this phase, if none of their patterns,

including the parent, detect any new faults after reordering the test vectors. The

postprocessing method, as discussed in [6], can also be served as potential solutions to

further compact the obtained stored pattern set.

As a result, the test application time is strictly dependent on the number of test

clusters and the number of their final components. The algorithm that is presented virtually

produces a minimal set of test clusters that allow one to flexibly trade-off test coverage,

test application time, and the size of the on-chip test memories. The algorithm can be

summarized as follows:

www.manaraa.com

75

 while fault list F is not empty do

 generate a given number of parent patterns

 produce all children patterns

 fault dropping simulate the current test clusters on F

 save effective patterns

 update F by removing detected faults

 run pattern reordering and save effective patterns

5.4 Experimental Results

Stellar BIST has been verified by conducting experiments on 12 industrial designs,

all of them with on-chip EDT-based test compression. They represent different design

styles and scan methodologies. The basic data regarding the designs, such as the number

of gates, number of scan cells, scan architecture, and the total number of stuck-at faults are

listed in Table 5.1. And the results of super-gate analysis for each design are shown in

Table 5.2.

Table 5.1 Circuit characteristics

 Gates Scan cells Chains Chain length Faults

D1 1.19M 72.3K 400 181 4.41M

D2 2.07M 148.0K 400 371 7.17M

D3 3.32M 326.0K 400 814 15.03M

D5 1.68M 86.0K 400 215 4.97M

D6 1.04M 57.0K 400 144 1.89M

D7 1.38M 93.2K 168 555 3.78M

D8 2.53M 206.3K 370 558 4.94M

D9 4.83M 325.9K 598 545 13.41M

D10 4.04M 199.7K 364 549 8.79M

D11 2.59M 154.0K 1,200 129 8.97M

D12 2.29M 252.4K 490 516 9.95M

www.manaraa.com

76

Table 5.2 Super-gate structural analysis

 Gates Super-gates Ratio Max size

D1 766,145 173,854 4.41 532

D2 881,012 222,974 3.95 1,528

D3 1,465,002 381,808 3.84 238

D5 885,417 227,477 3.89 683

D6 563,694 155,060 3.64 442

D7 938,775 203,219 4.62 443

D8 1,377,846 335,241 4.11 251

D9 2,828,442 749,333 3.77 371

D10 2,310,490 540,740 4.27 112

D11 1,531,011 366,255 4.18 990

D12 1,226,935 269,052 4.56 750

Table 5.3 Stored pattern (SP) reduction and test time (Time) increase (stuck-at)

Baseline
patterns
@90%

CBC=8 CBC=16 CBC=32 CBC=64

SP
(x)

Time
(x)

SP
(x)

Time
(x)

SP
(x)

Time
(x)

SP
(x)

Time
(x)

D1 640 2.50 2.90 3.33 3.90 5.00 5.90 5.00 8.89

D2 960 3.31 1.47 5.05 2.13 5.00 2.80 5.00 4.47

D3 640 2.01 2.70 3.33 4.30 3.33 4.50 5.00 10.90

D4 2,432 2.12 2.26 3.46 3.43 4.76 4.81 4.76 5.67

D5 9,788 1.14 1.52 1.53 2.05 2.55 2.50 4.63 2.96

D6 448 1.77 2.43 2.33 4.43 3.50 6.43 3.50 9.67

D7 80 2.50 2.20 2.50 3.20 2.50 4.80 2.50 6.40

D8 384 3.00 2.83 3.00 3.16 3.00 4.83 3.00 6.33

D9 256 4.00 1.75 4.00 2.75 4.00 5.00 4.00 9.25

D10 11,178 1.38 1.29 1.92 2.51 2.04 3.49 2.15 3.51

D11 704 3.67 2.27 5.50 2.64 5.50 3.00 5.50 4.18

D12 1,792 2.15 2.92 3.12 3.49 4.67 5.12 5.60 7.50

Avg 2,442 2.46 2.21 3.26 3.17 3.82 4.43 4.22 6.64

www.manaraa.com

77

As discussed in Section 5.2, super-gate analysis locates a certain number of gates

and groups them into corresponding super-gate structures. Parent patterns are generated

targeting faults at super-gate outputs prior to other fault locations and faults within each

super-gate are likely to be detected by the derivative patterns of these parent patterns. In

this way, each design can be treated as a simplified version that is formed by some super-

gates with a reduced fault list. As shown in Table 5.2, for each design, a large number of

gates (column “Gates”) can be grouped into fewer super-gate structures (column “Super-

gates”) and column “Ratio” may reflect the fault count reduction (or the average size of a

super-gate) after the super-gate transformation. The last column “Max size” includes the

size of the largest super-gate for each design.

Table 5.4 Stored pattern (SP) reduction and test time (Time) increase (transition)

Baseline
patterns
@85%

CBC=8 CBC=16 CBC=32 CBC=64

SP
(x)

Time
(x)

SP
(x)

Time
(x)

SP
(x)

Time
(x)

SP
(x)

Time
(x)

D1 4,156 1.59 2.72 2.33 4.08 3.61 5.37 4.64 7.10

D2 12,608 1.53 2.34 2.14 3.58 3.13 4.98 4.11 6.21

D3 3,967 1.50 4.23 1.82 6.25 2.38 8.90 3.26 14.01

D4 14,206 1.52 1.66 2.29 2.93 3.76 4.14 5.29 5.25

D5 24,216 1.06 1.32 1.13 1.79 1.55 2.18 2.01 2.44

D6 2,880 1.18 2.77 1.41 4.58 2.65 6.91 3.75 9.86

D7 640 2.50 2.90 3.33 4.20 3.33 4.90 5.00 10.74

D8 4,222 1.41 3.46 1.61 4.91 1.89 7.10 2.28 9.68

D9 448 3.50 1.71 3.50 2.00 3.50 2.29 7.00 7.99

D10 16,092 1.53 1.79 2.83 2.72 3.93 3.51 4.34 4.63

D11 1,280 2.50 3.25 4.00 3.60 5.00 4.05 6.67 7.55

D12 4,032 2.17 3.15 3.32 3.78 4.85 4.65 6.30 7.01

Avg 7,396 1.83 2.61 2.48 3.70 3.30 4.92 4.55 7.71

www.manaraa.com

78

Other results presented in this section were obtained for stuck-at (Table 5.3) and

transition (Table 5.4) faults. The second column of Table 5.3 lists baseline pattern counts

(PC) necessary to achieve 90% stuck-at test coverage (TC) by means of a conventional

EDT-based compression [7], whereas the second column of Table 5.4 reports baseline

pattern counts for 85% transition faults reference coverage obtained through a launch-off-

capture (LOC) approach. These two values were selected as widely-deployed test quality

standards responding to the ASIL D safety requirements. The ISO 26262 demands that

90% of static permanent faults are detected even when ASIL is set to level B. On the other

hand, a 90% detection threshold is needed by ASIL D for latent faults. These are targets of

particular importance for in-system tests executed through the life-time of automotive ICs.

Although the standard does not mandate a coverage for any particular fault model, the

industry is primarily targeting 90% stuck-at fault coverage during in-system testing. In

some cases, transition test patterns are also used, but the target test coverage for such

patterns is much lower.

Besides the second column, both tables consist of four main vertical segments

corresponding to four different values of the clock-between-complements (CBC)

parameter: 8, 16, 32, and 64. For each design, we report the following statistics: a stored

pattern (SP) reduction, i.e., a ratio of the number of baseline patterns and the number of

parent patterns, and a test time increase (Time) determined by dividing the total number of

test patterns by the number of baseline patterns. Consider, for example, design D2. It needs

290 parent patterns and effectively employs 1,408 test patterns to reach the 90% stuck-at

test coverage level for CBC = 8. The conventional sequential test compression scheme

needs 960 test patterns to achieve the same coverage. Therefore, the observed reduction of

stored patterns is 960 / 290 ≈ 3.31x, whereas the test application time increases, in this

case, 1,408 / 960 ≈ 1.47x. As can be seen, Tables 5.3 and 5.4 illustrate one of the advantages

of Stellar BIST – the ability to significantly reduce the number of patterns that need to be

saved as seeds, while preserving the attainable test coverage. Moreover, Table 5.5 presents

www.manaraa.com

79

the memory usage reduction for both stuck-at and transition patterns. The memory usage,

given a CBC value, is calculated by adding the total number of bits required for child

selection vectors to the total number of bits for EDT compressed parent patterns. For the

case of D2 and CBC = 8, the total size of child selection vectors is 8 · 290 = 2,320 bits (by

multiplying the value of CBC and the total number of parent patterns).

Table 5.5 Memory reduction for stuck-at (SAF) and transition (TDF) faults

CBC=8 CBC=16 CBC=32 CBC=64

SAF
(x)

TDF
(x)

SAF
(x)

TDF
(x)

SAF
(x)

TDF
(x)

SAF
(x)

TDF
(x)

D1 2.49 1.58 3.32 2.31 4.95 3.57 4.90 4.54

D2 3.29 1.52 5.00 2.12 4.90 3.07 4.80 3.95

D3 2.00 1.50 3.32 1.81 3.30 2.36 4.91 3.20

D4 2.11 1.51 3.40 2.25 4.60 3.64 4.46 4.95

D5 1.12 1.04 1.50 1.10 2.43 1.48 4.22 1.84

D6 1.77 1.18 2.33 1.40 3.48 2.63 3.46 3.71

D7 2.50 2.50 2.49 3.32 2.49 3.31 2.47 4.94

D8 3.00 1.40 2.99 1.61 2.98 1.87 2.97 2.25

D9 3.99 3.50 3.99 3.49 3.98 3.48 3.96 6.92

D10 1.37 1.53 1.90 2.80 2.00 3.86 2.07 4.19

D11 3.65 2.49 5.46 3.97 5.42 4.93 5.34 6.47

D12 2.14 2.16 3.07 3.27 4.53 4.70 5.28 5.94

Avg 2.45 1.83 3.23 2.45 3.76 3.24 4.07 4.41

As can also be noticed from Table 5.5, Stellar BIST requires, on the average over

all examined designs, 2.45, 3.23, 3.76, and 4.07 times less memory than the baseline

scheme to reach the reference 90% test coverage for CBC = 8, 16, 32, and 64, respectively.

For transition faults, the corresponding numbers are as follows: 1.83, 2.45, 3.24, and 4.41

times. It is also of interest to compare the presented results with what logic BIST deploying

www.manaraa.com

80

test points can achieve, under otherwise identical conditions. We have run experiments for

designs D1, D3, D5, and stuck-at faults. The results are as follows:

• D1: 200,000 pseudorandom patterns, 83.55% test coverage, 3,000 test points

(approximately 4% of all memory elements); as can be seen after applying 200K tests the

target coverage is not yet reached,

• D3: 35,520 pseudorandom patterns, 90% test coverage, 6,000 test points

(approximately 2% of all memory elements); LBIST needs 20.5 times more patterns to

match the target test coverage,

• D5: 156,288 pseudorandom patterns, 90% test coverage, 3,000 test points

(approximately 5% of all memory elements); LBIST needs 10.5 times more patterns to

match the target test coverage.

How large the CBC distance is actually needed to achieve desired test coverage

with the best reduction of a parent pattern count can also be retrieved from Tables 5.3 and

5.4. Consider the results for stuck-at faults and design D4. As can be easily verified, the

parent pattern count reductions obtained for CBC = 8, 16, 32, 64 are 2.12, 3.46, 4.76, and

4.76, respectively. A similar trend can be observed for the remaining test cases, where

increasing the value of CBC, and thus potentially increasing the number of children

patterns, due to the increased number of complements, results in entering the area of

diminishing returns: there are no further parent pattern count reduction gains, despite

increasing the value of CBC. Interestingly, for design D9, even the value of 8, i.e., the

smallest CBC examined, suffices to ensure the best reduction of stored patterns. This

finding is of special interest, since by increasing the value of CBC, one may visibly increase

test application time, due to more children patterns needed to secure target test coverage.

It can also be easily observed in the tables. Although similar results have been obtained for

transition faults, it is also evident that in this case, the parent pattern count reduction is

monotonically increasing with the increasing value of CBC. This trend is, however,

accompanied by a similar increase in test time. Possible trade-offs that must be considered

www.manaraa.com

81

here are better pronounced by additional experimental results presented in the following

paragraph.

Figure 5.6 Stored patterns vs. applied patterns

Figure 5.6 illustrates how the number of patterns to store (in the form of

decompressible seeds) drops, and how the number of patterns to apply (including both

parents and their derivatives) rises with the increasing distance between successive

complements (represented by the variable CBC). Here we use a higher granularity of CBC

values than that of Tables 5.3 and 5.4. The results are for designs D3 and D5 (stuck-at

faults), as well as D1 and D6 (transition faults). In each case, the solid curve represents

stored patterns, whereas the dashed one represents patterns that need to be applied. All of

the diagrams presented clearly demonstrate that while increasing the CBC value may lead

to a reduction of parent patterns (and hence relatively small on-chip test memories), this

www.manaraa.com

82

phenomenon is associated with a visible increase in the number of test patterns that need

to eventually be applied, or alternatively in the increased test time.

It is also worth noting that the results presented can be used to compare Stellar

BIST with the original Star-EDT scheme [94]. The number of stored and applied patterns

for Star-EDT, correspond to points where CBC (here the abscissa) matches the size of the

longest scan chains. In such a case, there is just a single complement per test application.

The longest scan chains for designs D3, D5, D1, and D6 (Figure 5.6) feature 814, 144, 181,

and 555 cells, respectively. As can be seen, designs D3 and D5 (stuck-at faults) need 128

and 1,344 stored patterns, while applying 55,850 and 37,800 patterns, respectively.

Similarly, designs D1 and D6 (transition faults) work with 768 and 512 stored patterns and

apply 51,118 and 68,436 tests. It is indisputable that compared to Star-EDT, Stellar BIST

provides a wide-range of options, allowing users much better and flexible trade-offs

between test data volume and test application time. As discussed earlier, it is also

confirmed here that increasing the value of CBC (including setting it to the scan chain

length) results in diminishing returns and sub-optimal choices.

5.5 Conclusion

Since automotive integrated circuits have become one of the key drivers of

innovation in test, in this chapter, we introduce a next generation test compression scheme,

particularly suitable for in-system automotive test applications. It exclusively deploys

compressed ATPG-produced test patterns and their on-chip-generated derivatives. Given

an encodable parent pattern, the latter ones are produced by complementing its bit slices

several times during a single test pattern application. An additional mechanism skews

multiple complements to increase the number of valuable tests. As a result, the presented

Stellar BIST outperforms earlier state-of-the-art sequential test compression techniques in

many respects. It offers very flexible trade-offs between test application time and test data

volume. This degree of flexibility was virtually impossible to achieve in earlier test data

www.manaraa.com

83

compression schemes, where the optimization scope was rather limited. Furthermore, it

allows a faster test coverage ramp-up, requires less memory to achieve otherwise similar

test coverage (which is indicative of higher test data compression and enhanced encoding

efficiency), or, alternatively, it returns higher test coverage numbers for comparable

memory usage. Besides its simple in-system test controller, a test memory remains the only

hardware component that shapes the Stellar BIST silicon real state. Fortunately, the

scheme’s ability to easily trade-off test data volume and test time, can alleviate this problem

in a programmable fashion.

www.manaraa.com

84

CHAPTER 6

CONCLUSIONS

6.1 Summary

This thesis introduces three DFT methods that reduce the ATPG-produced test set

size used with different test schemes.

In Chapter 3, we have proposed a TPI technique that resolves large internal

conflicts to increase the number of faults detected by each test pattern, while replacing

dedicated flip-flops by properly-selected existing functional flip-flops as drivers of the

control points to minimize the area overhead. Experiments conducted on several industrial

designs show that similar pattern count reduction can be achieved, when compared to the

method of control points using dedicated drivers which has already been proven to be very

effective.

In Chapter 4, we presented a staggered ATPG process that generates compacted

test patterns and applies them in a test-per-clock manner, with the help of a scan

architecture which contains dedicated compactor scan chains formed by capture-per-cycle

observation test points. This staggered ATPG process can merge more test cubes together,

by shifting certain incompatible test cubes along scan chains to make them compatible with

the merge array without losing any fault detection. A limited number of capture-per-cycle

observation test points are carefully selected to detect faults to reduce the overall pattern

count. Experimental results show that a good pattern count reduction can be achieved using

this staggered ATPG with an acceptable number of observation test points, compared to a

conventional ATPG for both 1-cycle and 2-cycles test patterns.

In Chapter 5, we seek to meet the high-quality test demands required by in-system

test (especially automotive test). Therefore, we have developed a Stellar BIST approach

that obtains the desired test stimuli by complementing multiple bits from a small set of

stored seeds. Bit-complements are performed through a simple test controller hardware.

www.manaraa.com

85

Valuable test clusters are also generated with a high compression ratio. According to the

experimental results, the Stellar BIST offers a faster test-coverage ramp-up with less

memory usage, not to mention the very flexible trade-offs between test data volume and

test application time.

Table 6.1 Staggered ATPG with additional conflict-aware control points

 Without control points With control points

Conventional

ATPG PC
Staggered
ATPG PC

Pattern
reduction

Conventional
ATPG PC

Staggered
ATPG PC

Pattern
reduction

D1 2,564 2,345 1.09x 1,400 953 1.47

D2 26,375 8,626 3.06x 4,161 2,089 1.99

D3 3,204 1,878 1.71x 1,724 1,025 1.68

D4 8,263 4,508 1.83x 5,433 3,000 1.81

D5 1,914 889 2.15x 1,370 723 1.89

D6 5,200 5,111 1.02x 1,822 1,151 1.58

D7 3,206 1,820 1.76x 3,195 1,798 1.78

Furthermore, our proposed methods can also be applied in a combined way for even

better performance on the reduction of test set size. First, staggered ATPG can be applied

to designs which have already been inserted with conflict-aware control points discussed

in Chapter 3 and can work synergistically with these control points. As shown in Table 6.1,

staggered ATPG is capable of further reducing the pattern count, based on the reduced

patterns after control points insertion. For D1 and D6, control points can also improve the

effectiveness of staggered ATPG (from 1.02x to 1.58x pattern count reduction).

Another option is to combine the Stellar BIST approach with the staggered ATPG.

This combined solution allows us to generate both parent and children patterns for Stellar

BIST in a similar way as proposed by staggered ATPG, and with additional capture-per-

cycle observation test points inserted (similar to that discussed in Section 4.4), all Stellar

www.manaraa.com

86

BIST test stimuli can be applied in a test-per-clock fashion. In this case, parent patterns are

generated from original or shifted test cubes, using the same fault order as discussed in

Section 5.3. Extra faults can also be detected by both parent and children patterns during

their shift cycles. Table 6.2 compares the total stored patterns and applied patterns of the

combined solution with a small CBC value of 8 to the Stellar BIST results in Section 5.4

(5 designs using stuck-at faults for the 90% test coverage target). As shown in Table 6.2,

the combined solution using a CBC of 8 requires similar or even less stored patterns,

compared to the results with a CBC value of 64, while the total number of applied patterns

is much less than the original Stellar BIST approach.

Table 6.2 Apply Staggered ATPG to Stellar BIST

 Original Stellar BIST Combined solution

 Stored patterns Applied patterns Stored
patterns

Applied
patterns CBC=8 CBC=64 CBC=8 CBC=64

D1 256 128 1,856 5,688 128 569

D2 290 192 1,408 4,288 192 1,344

D3 1,145 511 5,500 13,792 384 3,116

D4 253 128 1,088 4,330 128 1,148

D5 32 32 176 512 32 160

6.2 Future Work

In this study, we have proposed several different methods to reduce ATPG-

produced test set size. Since we primarily focus on traditional fault models, like stuck-at

and transition fault models throughout our experiments, the application of our approaches

on other fault models (especially such as cell internal faults) remains to be explored.

In Chapter 4, we introduce a staggered ATPG leveraging carefully-inserted capture-

per-cycle observation test points to apply staggered test patterns during shift cycles.

www.manaraa.com

87

Suitable ways to load out the output data have not been examined yet. And it remains to be

another unexplored area of whether these staggered test patterns, along with their capture-

per-cycle test responses, can be used for diagnosis purposes.

For the Stellar BIST approach presented in Chapter 5, we focus on optimizing test

data associated with input stimuli. Output test data may also need to be reduced

accordingly. This requires an effective test response compaction scheme deployed on the

output side with the capability of eliminating/tolerating unknown states propagating from

the output channels.

www.manaraa.com

88

REFERENCES

[1] E. B. Eichelberger and T. W. Williams, “A Logic Design Structure for LSI

Testability", Proc. of DAC, pp. 462-468, 1977.

[2] V. D. Agrawal, C. R. Kime and K. K. Saluja, “A Tutorial on Buil-In Self-Test, Part

1: Principles", IEEE Design and Test of Computers, Vol. 10, Issue 1, pp. 73-82, March

1993.

[3] A. Jas, C.V. Krishna, and N.A. Touba, “Weighted pseudorandom hybrid BIST,”

IEEE Trans. VLSI, vol. 12, no. 12, pp. 1277-1283, Dec. 2004.

[4] R. Kapur, S. Patil, T.J. Snethen, and T.W. Williams, “A weighted random pattern

test generation system,” IEEE Trans. CAD, vol. 15, no. 8, pp. 1020-1025, Aug. 1996.

[5] K.-H. Tsai, J. Rajski, and M. Marek-Sadowska, “Star test: the theory and its

applications,” IEEE Trans. CAD, vol. 19, no. 9, pp. 1052-1064, Sept. 2000.

[6] I. Pomeranz and S.M. Reddy, “Static test data volume reduction using

complementation or modulo-M addition,” IEEE Trans. VLSI, vol. 19, no. 6, pp. 1108-

1112, June 2011.

[7] J. Rajski, J. Tyszer, M. Kassab and N. Mukherjee, “Embedded Deterministic Test",

IEEE Transactions on CAD of Integrated Circuits and Systems, Vol. 23, Issue 5, pp.

776-792, May 2004.

[8] M. Abramovici, M. Breuer, and A. Friedman, “Digital Systems Testing and

Testable Design”, IEEE Press, Piscataway, NJ, 1994.

[9] R. D. Eldred, “Test Routines Based on Symbolic Logical Statements", Journal of

the ACM, Vol. 6, pp. 33-36, 1959.

[10] S.M. Reddy, “Test Drivers – Past, Present, and Future”, VTS 2018 Invited

Keynote.

www.manaraa.com

89

[11] J. A. Waicukauski, E. Lindbloom, B. K. Rosen and V. S. Iyengar, “Transition

Fault Simulation", IEEE Design and Test of Computers, Vol. 4, Issue 2, pp. 32-38,

1987.

[12] J. Savir, “Skewed-Load Transition Test: Part I, Calculus", Proc. of ITC, pp.

705713, September 1992.

[13] J. Savir and S. Patil, “Broad-Side Delay Test", IEEE Transactions on CAD of

Integrated Circuits and Systems, Vol. 13, Issue 8, pp. 1057-1064, August 1994.

[14] G.L. Smith, “Model for Delay Faults Based Upon Paths,” Proc. ITC 1985, pp.342-

349.

[15] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava, M. Keim,

J. Schloeffel, and A. Fast, “Cell-aware test,” IEEE Trans. CAD, vol. 33, pp. 396-1409,

2014.

[16] J. P. Roth, “Diagnosis of automata failures: a calculus and a method,” in IBM

Journal of Research & Devlopment, vol. 10, pp. 278 –291, July 1996.

[17] ISO 26262-1:2011- Road Vehicles—Functional Safety, 2011, online available:

http://www.iso.org/iso/catalogue_detail?csnumber=43464.

[18] X. Fan, S.M. Reddy, S. Wang, S. Kajihara, and Y. Sato, “Genetic algorithm based

approach for segmented testing”, in Proc. Int. Conf. on Dependable Systems and

Networks Workshops, 2011, pp. 85-90.

[19] Y. Liu, E. Moghaddam, N. Mukherjee, S. M. Reddy J. Rajski, and J. Tyszer,

“Minimal area test points for deterministic patterns”, in Proc. ITC, 2016, paper 2.4.

[20] Y. Liu, J. Rajski, S. M. Reddy, J. Solecki and J. Tyszer, “Staggered ATPG with

cpature-per-cycle observation test points”, in Proc. VTS, 2018.

[21] Y. Liu, N. Mukherjee, J. Rajski, S. M. Reddy, and J. Tyszer, “Deterministic Stellar

BIST for in-system automotive test”, to be submitted to ITC 2018.

[22] A. Kumar, J. Rajski, S. M. Reddy, and C. Wang, "On the generation of compact

test sets, " in ITC, 2013.

www.manaraa.com

90

[23] A. Kumar, J. Rajski, S.M. Reddy, and T. Rinderknecht, “On the generation of

compact deterministic test sets for BIST ready designs,” Proc. ATS, 2013, pp. 201-206.

[24] P. Goel and B. Rosales, “Test generation and dynamic compaction of test,” in

Annu Test Conference, pp. 260 – 268, 1979.

[25] B. Ayari and B. Kaminska, “A new dynamic test vector compaction for automatic

test pattern generation,” IEEE Trans. on CAD, vol. 13, pp. 353 –358, mar 1994.

[26] I. Pomeranz, L. Reddy, and S. Reddy, “Compactest: a method to generate compact

test sets for combinational circuits,” IEEE Trans. on CAD, vol. 12, pp. 1040–1049, jul

1993.

[27] M. Konijnenburg, J. van der Linden, and A. van de Goor, “Compact test sets for

industrial circuits,” pp. 358 –366, 1995.

[28] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. Reddy, “Cost-effective generation

of minimal test sets for stuck-at faults in combinational logic circuits,” IEEE

Transactions on CAD, vol. 14, pp. 1496 –1504, dec 1995.

[29] S. Hellebrand, B. Reeb, S. Tarnick, and H.-J. Wunderlich, “Pattern generation for

a deterministic bist scheme,” in ICCAD, pp. 88–94, 1995.

[30] Z. Wang and D. Walker, “Dynamic compaction for high quality delay test,” pp.

243 –248, 2008.

[31] S. Remersaro, J. Rajski, S. Reddy, and I. Pomeranz, “A scalable method for the

generation of small test sets,” in Proc. of DATE, pp. 1136 –1141, 2009.

[32] L. Reddy, I. Pomeranz, and S. Reddy, “Rotco: a reverse order test compaction

technique,” in Euro ASIC, pp. 189–194, 1992.

[33] D. Hochbaum, “An optimal test compression procedure for combinational

circuits,” IEEE Trans. on CAD, vol. 15, no. 10, pp. 1294–1299, 1996.

[34] I. Hamzaoglu and J. Patel, “Test set compaction algorithms for combinational

circuits,” in Procs. of ICCAD, pp. 283 – 289, 1998.

www.manaraa.com

91

[35] I. Pomeranz and S. M. Reddy, “Forward-looking fault simulation for improved

static compaction,” IEEE Trans. on CAD, vol. 20, pp. 1262–1265, Nov. 2006.

[36] S. Reddy, "Easily testable realizations for logic functions," IEEE Transactions on

Computers, vol. 21, no. 11, pp. 1183-1188, 1972.

[37] D. E. Muller, "Application of Boolean algebra to switching circuit design and to

error detection", IRE Trans. Electron. Comput., vol. EC-3, pp. 6-12, Sept. 1954.

[38] W. -T Cheng, J. H. Patel, "A Minimum Test set for Multiple Fault Detection in

Ripple carry Adders", IEEE Trans. Comput., vol. C-36, no. 7, pp. 891-895, July 1987.

[39] M.J. Geuzebroek, J.T. van der Linden, and A.J. van de Goor, “Test point insertion

that facilitates ATPG in reducing test time and data volume,” Proc. ITC, 2002, pp. 138-

147.

[40] I. Pomeranz and S.M. Reddy, “Test-point insertion to enhance test compaction

for scan designs,” Proc. ICDSN, 2000, pp. 375-381.

[41] S. Romersaro, J. Rajski, T. Rinderknecht, S.M. Reddy, and I. Pomeranz, “ATPG

heuristics dependent observation point insertion for enhanced compaction and data

volume reduction,” Proc. DFTVS, 2008, pp. 385-393.

[42] N. Tamarapalli and J. Rajski, “Constructive multi-phase test point insertion for

scan-based BIST,” Proc. ITC, 1996, pp. 649-658.

[43] S. Udar and D. Kagaris, “Minimizing observation points for fault location,”

Proc. DFT, 2009, pp. 263-267.

[44] M. Yoshimura, T. Hosokawa, and M. Ohta, “A test point insertion method to

reduce the number of test patterns,” Proc. ATS, 2002, pp. 298-304.

[45] L.H. Goldstein and E.L. Thigpen, “SCOAP: Sandia controllability/observability

analysis program,” Proc. DAC, 1980, pp. 190-196.

[46] M.J. Geuzebroek, J.T. van der Linden, and A.J. van de Goor, “Test point insertion

for compact test sets,” Proc. ITC, 2000, pp. 292-301.

www.manaraa.com

92

[47] C. Acero, D. Feltham, F. Hapke, E. Moghaddam, N. Mukherjee, V. Neerkundar,

M. Patyra, J. Rajski, J. Tyszer, J. Zawada, “Embeded deterministic test points for

compact cell-aware tests,” Proc. ITC, 2015, paper 2.2.

[48] C. Su, C. R. Kime, "Computer-Aided Design of Pseudoexhaustive BIST for

Semiregular Circuits", Proc. Int. Test Conf., pp. 680-687, 1990.

[49] I. Pomeranz, S. M. Reddy, "On methods to match a test pattern generator to a

circuit-under-test", IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 6, no. 3,

pp. 432-444, Sep. 1998.

[50] P. H. Bardell and W.H. McAnney, “Simultaneous self-testing system,” US

patent 4513418, Apr. 23, 1985.

[51] F. Corno, P. Prinetto, and M. Sonza Reorda, “Making the circular self-test path

technique effective for real circuits,” Proc. ITC, 1994, pp. 949-957.

[52] A. Jas, K. Mohanram, and N.A. Touba, “An embedded core DFT scheme to

obtain highly compressed test sets,” Proc. ATS, 1999, pp. 275-280.

[53] E. Kalligeros, X. Kavousianos, D. Bakalis, and D. Nikolos, “An efficient seeds

selection method for LFSR-based test-per-clock BIST,” Proc. ISQED, 2002, pp. 261-

266.

[54] B. Konemann, J. Mucha, and G. Zwiehoff, “Built-in logic block observation

techniques,” Proc. ITC, 1979, pp. 37-41.

[55] A. Krasniewski and S. Pilarski, “Circular self-test path: a low cost BIST

technique for VLSI circuits,” IEEE Trans. CAD, vol. 8, no.1, pp. 46-55, Jan. 1989.

[56] Y. Son, J. Chong, and G. Russell, “E-BIST: Enhanced test-per-clock BIST

architecture,” IEEE Proc. Comput. Digit. Techn., vol. 149, pp. 9–15, Jan. 2002.

[57] C. Stroud, “An automated BIST approach for general sequential logic

synthesis,” Proc. DAC, 1988, pp. 3-8.

www.manaraa.com

93

[58] G. Mrugalski, J. Rajski, J. Solecki, J. Tyszer, and C. Wang, “Trimodal scan-based

test paradigm,” IEEE Trans. VLSI Systems, vol. 25, no. 3, pp. 1112-1125, March

2017.

[59] F. Zhang, D. Hwong, Y. Sun, A. Garcia, S. Alhelaly, G. Shofner, L. Winemberg,

and J. Dworak, "Putting wasted clock cycles to use: Enhancing fortuitous cell-aware

fault detection with scan shift capture,” Proc. ITC, 2016, paper 2.3.

[60] S. Milewski, N. Mukherjee, J. Rajski, J. Solecki, J. Tyszer, and J. Zawada, “Full-

scan LBIST with capture-per-cycle hybrid test points”, Proc. ITC, 2017, paper 10.3.

[61] O. Novak and J. Nosek, “Test-per-clock testing of the circuits with scan,” Proc.

Int. On-Line Test Workshop, 2001, pp. 90-92.

[62] W. Rao and A. Orailoglu, “Virtual compression through test vector stitching for

scan based designs,” Proc. DATE, 2003, pp. 104-109.

[63] H.-J. Wunderlich, “Multiple distributions for biased random test patterns,” IEEE

Trans. CAD, vol. 9, no. 6, pp. 584-593, June 1990.

[64] A.-W. Hakmi, H.-J. Wunderlich, C.G. Zoellin, A. Glowatz, F. Hapke, J.

Schloeffel, and L. Souef, “Programmable deterministic built-in self-test,” in Proc. ITC,

2007, paper 18.1.

[65] S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, “A mixed mode BIST scheme

based on reseeding of folding counters,” in Proc. ITC, 2000, pp. 778-784.

[66] H.-G. Liang, S. Hellebrand, and H.-J. Wunderlich, “Two-dimensional test data

compression for scan-based deterministic BIST,” in Proc. ITC, 2001, pp. 894-902.

[67] N.A. Touba and E.J. McCluskey, “Bit-fixing in pseudo-random sequences for

scan BIST,” IEEE Trans. CAD, vol. 20, no. 4, pp. 545-555, April 2001.

[68] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in Proc. ICCAD, 1996, pp.

337-343.

[69] G. Kiefer, H. Vranken, E.-J. Marinissen, and H.-J. Wunderlich, “Application of

deterministic logic BIST on industrial circuits,” in Proc. ITC, 2000, pp. 105-114.

www.manaraa.com

94

[70] H.-J. Wunderlich and G. Kiefer, “Deterministic BIST with multiple scan chains,”

in Proc. ITC, 1998, pp. 1057-1064.

[71] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, “Highly X-

tolerant selective compaction of test responses,” in Proc. VTS, 2009, pp. 245-250.

[72] J. Rajski, J. Tyszer, G. Mrugalski, N. Mukherjee, W.-T. Cheng, and M. Kassab,

“X-Press: two-stage X-tolerant compactor with programmable selector,” IEEE Trans.

CAD, vol. 7, no. 1, pp. 147159, January 2008.

[73] P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel, and H.J. Wunderlich,

“High defect coverage with low-power test sequences in a BIST environment,” IEEE

Design & Test of Computers, vol. 19, pp. 44-52, Sept.-Oct. 2002.

[74] J. Rajski, J. Tyszer, G. Mrugalski, and B. Nadeau-Dostie, “Test generator with

preselected toggling for low power built-in self-test,” in Proc. VTS, 2012, pp. 1-6.

[75] A.A. Al-Yamani, S. Mitra, and E.J. McCluskey, “BIST reseeding with very few

seeds,” in Proc. VTS, 2003, pp. 69–76.

[76] D. Das and N.A. Touba, “Reducing test data volume using external/LBIST hybrid

test patterns,” in Proc. ITC, 2000, pp. 115-122.

[77] R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for embedded testing,” in Proc.

ITC, 2001, pp. 530-537.

[78] A. Jas, C.V. Krishna, and N.A. Touba, “Hybrid BIST based on weighted pseudo-

random testing: a new test resource partitioning scheme,” in Proc. VTS, 2001, pp. 2-8.

[79] C.V. Krishna and N.A. Touba, “Hybrid BIST using an incrementally guided

LFSR,” in Proc. Symp. Defect and Fault Tolerance, 2003, pp. 217-224.

[80] L. Lei and K. Chakrabarty, “Hybrid BIST based on repeating sequences and

cluster analysis,” in Proc. DATE, 2005, pp. 11421147.

[81] P. Wohl, J.A. Waicukauski, S. Patel, and M. Amin, “X-tolerant compression and

applications of scan-ATPG patterns in a BIST architecture,” in Proc. ITC, 2003, pp.

727-736.

www.manaraa.com

95

[82] B. Koenemann, “LFSR-coded test patterns for scan designs,” in Proc. ETC, 1991,

pp. 237-242.

[83] V. Gherman, H.-J. Wunderlich, H. Vranken, F. Hapke, M. Wittke, and M. Garbers,

“Efficient pattern mapping for deterministic logic BIST,” in Proc. ITC, 2004, pp. 48–

56.

[84] A.-W. Hakmi, S. Holst, H.-J. Wunderlich, J. Schloffel, F. Hapke, and A. Glowatz,

“Restrict encoding for mixed-mode BIST,” in Proc. VTS, 2009, pp. 179-184.

[85] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-in

test for circuits with scan based on reseeding of multiple-polynomial linear feedback

shift registers,” IEEE Trans. Comput., vol. 44, no. 2, pp. 223-233, Feb. 1995.

[86] C.V. Krishna and N.A. Touba, “Reducing test data volume using LFSR reseeding

with seed compression,” in Proc. ITC, 2002, pp. 321-330.

[87] J. Lee and N. A. Touba, “LFSR-reseeding scheme achieving lowpower dissipation

during test,” IEEE Trans. CAD, vol. 26, no. 2, pp. 396-401, Feb. 2007.

[88] P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Low power mixed-mode

BIST based on mask pattern generation using dual LFSR re-seeding,” in Proc. ICCD,

2002, pp. 474-479.

[89] P. Wohl, J.A. Waicukauski, S. Patel, F. DaSilva, T.W. Williams, and R. Kapur,

“Efficient compression of deterministic patterns into multiple PRPG seeds,” in Proc.

ITC, 2005, pp. 916-925.

[90] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, A. Ferko, B. Keller, D.

Scott, B. Koenemann, and T. Onodera, “Extending OPMISR beyond 10x scan test

efficiency,” IEEE Design & Test, vol. 19, no. 5, pp. 65-73, 2002.

[91] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, P. Szczerbicki, and J. Tyszer,

“Deterministic clustering of incompatible test cubes for higher power-aware EDT

compression”, IEEE Trans. CAD, vol. 30, no. 8, pp. 1225-1238, Aug. 2011.

www.manaraa.com

96

[92] R. Kapur, S. Mitra, and T.W. Williams, “Historical perspective on scan

compression,” IEEE Design & Test, vol. 25, no. 2, pp. 114-120, 2008.

[93] N.A. Touba, “Survey of test vector compression techniques,” IEEE Design &

Test, vol. 23, pp. 294-303, 2006.

[94] G. Mrugalski, J. Rajski, J. Solecki, Ł. Rybak, and J. Tyszer, “StarEDT:

Deterministic on-chip scheme using compressed test patterns,” IEEE Trans. CAD, vol.

36, No. 4, April 2017, pp. 683-693.

[95] E. Moghaddam, N. Mukherjee, J. Rajski, J. Tyszer, and J. Zawada, “Test point

insertion in hybrid test compression/LBIST architectures,” Proc. ITC, 2016, paper 2.1.

[96] J. Rajski, J. Tyszer, C. Wang, and S. Reddy, “Finite memory test response

compactors for embedded test applications,” IEEE Trans. CAD, vol. 24, no. 4, pp. 622-

634, April 2005.

	Design for test methods to reduce test set size
	Recommended Citation

	tmp.1542655823.pdf.vrbYk

