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ABSTRACT 

With rapid development in semiconductor technology, today's large and complex 

integrated circuits require a large amount of test data to achieve desired test coverage. Test 

cost, which is proportional to the size of the test set, can be reduced by generating a small 

number of highly effective test patterns. Automatic Test Pattern Generators (ATPGs) 

generate effective deterministic test patterns for different fault models and can achieve high 

test coverage. To reduce ATPG-produced test set size, design for test (DFT) methods can 

be used to further improve the ATPG process and apply generated test patterns in more 

efficient ways. 

The first part of this dissertation introduces a test point insertion (TPI) technique 

that reduces the test pattern counts and test data volume of a design by adding additional 

hardware called control points. These dedicated control points are inserted at internal nodes 

of the design to resolve large internal conflicts during ATPG. Therefore, more faults can 

be detected by a single test pattern. To minimize silicon area needed to implement these 

control points, we propose a method that reuses some existing functional flip-flops as 

drivers of the control points, instead of inserting dedicated flip-flops for the control points. 

Experimental results on industrial designs indicate that the proposed technique can achieve 

significant test pattern reductions, similar to the control points using dedicated flip-flops. 

The second part of this dissertation proposes a staggered ATPG scheme that 

produces deterministic test-per-clock-based staggered test patterns by using dedicated 

compactor scan chains to capture additional test responses during scan shift cycles that are 

used for regular scan cells to completely load each test pattern. These compactor scan 

chains are formed by dedicated capture-per-cycle observation test points inserted at 

suitable locations of the design. By leveraging this new scan infrastructure, more 

compacted test patterns can be generated, and more faults can also be systematically 

detected during the simulation process, thus reducing the overall test pattern count. 
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To meet the stringent test requirements for in-system test (especially for automotive 

test), a built-in self-test (BIST) approach, called Stellar BIST, is introduced in the last part 

of this dissertation. Stellar BIST employs a dedicated BIST infrastructure with additional 

on-system memory to store some parent test patterns (seeds). Derivative test patterns can 

be obtained by complementing selected bits of corresponding parent patterns through an 

on-chip Stellar BIST controller. A dedicated ATPG process is also proposed for generating 

a minimal set of test patterns that need to be stored and their effective derivative patterns 

that require short test application time. Furthermore, the proposed scheme can provide 

flexible trade-offs between stored test data volume and test application time. 
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PUBLIC ABSTRACT 

With rapid development in semiconductor technology, today's large and complex 

integrated circuits require a large amount of test data to achieve desired test coverage. Test 

cost, which is proportional to the size of the test set, can be reduced by generating a small 

number of highly effective test patterns. Automatic Test Pattern Generators (ATPG) 

generate effective deterministic test patterns for different fault models and can achieve high 

test coverage. To reduce ATPG-produced test set size, design for test (DFT) methods can 

be used to further improve the ATPG process and apply generated test patterns in more 

efficient ways. 

We first introduce a test point insertion (TPI) technique that reduces test pattern 

count and test data volume of a design by adding additional hardware called control points 

that are inserted at internal nodes of the design to resolve large internal conflicts of ATPG 

assignments. To minimize silicon area needed to implement these control points, we 

propose a method that reuses some existing functional flip-flops as drivers of the control 

points, instead of inserting dedicated flip-flops for the control points. 

We also propose a staggered ATPG scheme that produces deterministic test-per-

clock-based staggered test patterns by using dedicated compactor scan chains to capture 

test responses by leveraging the scan shift cycles. This new scan infrastructure allows us 

to generate more compacted test patterns to systematically detect more faults and reduces 

the overall test pattern count. 

Finally, we introduce a built-in self-test (BIST) approach, called Stellar BIST that 

employs a dedicated BIST infrastructure with additional memory to store a minimal set of 

parent test patterns (seeds). Desired test stimuli can be obtained by complementing selected 

bits of corresponding parent patterns through an on-chip Stellar BIST controller. 
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CHAPTER 1 

INTRODUCTION 

With rapid growth in technology, Moore's law indicates that the number of 

transistors in an integrated circuit doubles every eighteen months to two years, while the 

size of the transistors themselves are actually decreasing. This may lead to more 

complicated design structures which would require more test patterns to test the entire 

design. It may also require advanced ways to apply tests. 

Contemporary Automatic Test Pattern Generators (ATPG) generate test patterns 

for different fault models and for large complex nanometer designs to achieve high fault 

coverage. Working synergistically with on-chip test compression logic, ATPG can produce 

highly compact (small) test sets. However, due to the fast-changing semiconductor 

manufacturing process and the increasing complexity of digital designs, the inflated test 

data volume has had a significant impact on the test application time, which, in turn, has 

had a visible impact on the overall test cost. At the same time, the rapid development of 

advanced driver assistance systems (ADAS) and self-driving vehicles, with stringent 

requirements for high quality and long-term reliability driven by functional safety 

standards, demands advanced test solutions that would rely on ATPG to produce small but 

effective test sets. 

In this thesis, we address the problem of reducing the size of ATPG-produced test 

sets (deterministic test patterns). The main objective of this study is to introduce methods 

that result in more compact test sets and to apply generated tests in more efficient ways for 

different test concerns. 

In this chapter, we introduce the basic concept of design for test (DFT) and some 

of the DFT methods and fundamentals that are involved in our work. 
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1.1 Design for Test 

Manufacturing test screens products after they are manufactured and helps 

eliminate products containing defects that occurred during manufacturing process. Test 

vectors are loaded into a chip through its primary input pins while responses are observed 

through its primary output pins. The tester, known as automatic test equipment (ATE), is 

used during the manufacturing test for the circuit under test (CUT). Test vectors and 

expected responses are stored in the ATE memory in advance. As shown in Figure 1.1, 

during the manufacturing test, test patterns are applied to the CUT and output responses 

are then analyzed and compared to expected fault-free responses. If the output responses 

do not match the fault-free responses, then the circuit is considered to be defective. 

Figure 1.1 Manufacturing test 

The cost of performing tests by an ATE could account for a large portion of the 

total manufacturing cost. Most of this cost will depend on factors, such as the test 

application time and the memory capacity of the ATE. In other words, complicated designs 

which require more test patterns and longer test application time would have a higher cost 

in ATE based testing. The process of design for testability (DFT) is one way to make a 
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design easier to test. DFT techniques add additional hardware to the CUT to improve its 

testability. 

In this sub-section, we will introduce some popular DFT methodologies and 

concepts including scan design, built-in self-test (BIST), and test data compression. 

1.1.1 Scan Design 

A CUT typically contains both combinational logic and sequential cells (such as 

flip-flops and latches). To test a circuit with sequential cells, test vectors should be 

generated over multiple cycles. This may increase the total test application time, as well as 

the test vector size. If a circuit contains many sequential elements, generating tests to 

achieve meaningful fault coverage for the entire design would be very difficult and has 

been found to be impractical. 

Figure 1.2 Scan flip-flops 

Testing a circuit with pure combinational logic is much simpler and is the preferred 

method. If possible, the sequential elements should be made controllable and observable 

(like primary inputs and outputs), so the circuit can be tested as a design with pure 
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combinational logic. The DFT methodology of scan design [1] was introduced to achieve 

this objective. 

Scan design modifies original flip-flops to scan cells, by adding an additional test 

mode to the flip-flops. As shown in Figure 1.2, a scan-modified flip-flop has an extra data 

input called scan-in (SI) and a test mode control input called scan enable (SE), which 

selects between the flip-flop data input SI and its original data input (D). Each SI pin is 

directly connected to a primary input or the output of another scan flip-flop (SO), and the 

output is connected to an SI pin of another scan flip-flop or a primary output. Thus, during 

test mode, these flip-flops form one or more shift registers, also known as scan chains. 

During shift cycles (the scan shift is enabled), test vectors are shifted into scan chains from 

primary inputs to set scan flip-flops to specific values. Test responses from the 

combinational logic of the CUT are then captured (by disabling the scan shift) in to scan 

cells. Captured responses are shifted out of the scan chains to primary output pins, while 

loading the next test pattern. 

Although the scan design technique may add extra hardware to the circuit and may 

require extra time for shifting data in and out, it provides a high level of fault coverage and 

the capability of performing defect diagnosis. 

Figure 1.3 BIST scheme 
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1.1.2 Built-in Self-Test (BIST) 

Built-In Self-Test (BIST) [2] is a way to make it possible for a circuit to test itself 

through additional hardware. 

Figure 1.3 shows a basic BIST scheme. With no external patterns, the BIST 

technique uses an internal test pattern generator (TPG) as the pattern source. Linear 

feedback shift registers (LFSRs), which are good at generating pseudo-random patterns, 

yet require little area overhead, are commonly used as a TPG. The CUT responses to these 

random patterns generated from the TPG, are then analyzed through a signature analyzer 

(SA), which determines whether the circuit has passed the test. Multiple-input signature 

registers (MISRs) are often used to construct a signature analyzer. Responses are 

compacted and examined through the MISR. With the help of the BIST technique, the test 

can be performed in-field. Thus, the data exchanged between CUT and the tester is 

drastically reduced. 

Although many faults can typically be detected using random patterns, BIST 

requires that the CUT has no bus conflicts and no unbounded X sources (unknown values 

that may corrupt the BIST signature have to be bounded by additional logic), and that the 

circuit should also be random pattern testable. Typically, it is to top off pseudo-random 

patterns with additional deterministic patterns to cover remaining random pattern resistant 

faults or use weighted random patterns [2], [3], [4] to achieve required fault coverage. 

However, experimental data shows that using top off tests may not help reduce the total 

test application time. For this reason, for in-field test, stored pattern test methods are being 

considered in which deterministic test patterns are stored in the memory of a system/circuit 

under test [5], [6]. 

1.1.3 Test Compression 

Since the design sizes may double every 18 months, test data volume (which is 

proportional to the number of test patterns and the number of scan cells) also grows, and 
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the test application time increases. Therefore, a larger test data volume would require more 

tester memory for storing test data and would also lead to a longer test application time. 

This may lead to a significant increase in test cost. 

To achieve reduction of test data volume, several test compression methodologies 

have been introduced. An effective test compression technique, called Embedded 

Deterministic Test (EDT) [7] was developed by inserting additional logic into the circuit, 

utilizing the existing scan design, and refraining from touching any functional paths of the 

CUT. 

Figure 1.4 EDT architecture [7] 

As shown in Figure 1.4, EDT logic contains a decompressor placed between the 

chip's input channels and internal scan chain inputs and a compactor placed between 

internal scan chain outputs and the chip's output channels. The decompressor consists of a 

ring generator and a phase shifter [7]. The ring generator, which is an optimized LFSR, is 

used to decompress the compressed data injected from input channels. The phase shifter, 

placed at the outputs of the ring generator, reduces linear dependencies between sequences 
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shifted into internal scan chains. A high compression ratio between the number of internal 

scan chains and the number of input channels can be achieved with the help of the 

decompressor. This allows for a shorter length of internal scan chains by accommodating 

a large number of scan chains. Therefore, both the test data volume stored in the tester 

memory and the test application time can be reduced. To evaluate output responses, the 

compactor, which mainly consists of an XOR tree, is used to observe the output data with 

fewer outputs, while not losing the observability of errors in responses from internal scan 

chains of faulty circuits. 

1.2 Fault Models 

During circuit fabrication process, physical defects may occur throughout a device 

[8]. These defects may include shorts, opens, or transistor defects. To obtain tests to detect 

these defects, different fault models are introduced for pattern generation. In this sub-

section, a brief description of several fault models which have yielded tests that have 

achieved great success in detecting defects in manufactured circuits is given. 

1.2.1 Stuck-at Fault Model 

Stuck-at fault model [9] is used to describe the faulty behavior of a line permanently 

tied to a logic value. A line considered to be tied to logic 1 or 0, is said to be stuck-at-1 (s-

a-1) or stuck-at-0 (s-a-0). To test a stuck-at fault, test vectors need to be capable of exciting 

the fault as well as propagating the fault-effect to a primary output or a pseudo-primary 

output (a scan cell input). 

Stuck-at fault model is an important fault model. All the other fault models that are 

used today, can be considered as conditional stuck-at faults [10]. 

1.2.2 Transition Fault Model 

Transition delay fault model [11] is introduced to detect defects that cause increased 

propagation delays of circuit paths. The two types of transition faults are called the slow-
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to-rise fault and the slow-to-fall fault. A slow-to-rise fault occurs when a line that needs to 

switch from 0 to 1 requires a longer than normal time (delay). If this delay effect can be 

captured by any primary output or scan flip-flop, the circuit is not able to function properly 

at the given clock speed. Similarly, a slow-to-fall fault occurs when a line requires a longer 

time (delay) to switch from 1 to 0. 

Based on the definition of the transition fault model, to detect a given transition 

fault, two patterns applied at a given clock speed are required. To test a slow-to-rise (slow-

to-fall) fault at a given line, the first pattern has to set the line to the initial value 0 (1), and 

the second pattern needs to set the line to the final value 1 (0) and propagate the delayed 

transition effect to a primary output or a scan flip-flop. Two of the commonly used 

transition fault pattern generation methods include: launch-off-capture (LOC) and launch-

off-shift (LOS), which are briefly introduced below. 

Figure 1.5 Waveform for Launch-off-Shift delay test 

Launch-off-Shift (LOS) [12]: The timing waveform for a LOS test procedure is 

shown in Figure 1.5. The transition at faulty the line is launched in the last shift cycle of 

shifting the test, followed immediately by a functional clock pulse to capture the circuit 

outputs. The scan enable (SEN) signal is used to switch the CUT from shift mode (launch 
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the transition) to function mode (capture the transition) with at-speed timing. Both patterns 

of a two-pattern LOS test are obtained by shifted in values. In LOS test to achieve at-speed 

test of the fault the SEN line has to switch fast. 

Figure 1.6 Waveform for Launch-off-Capture delay test 

Launch-off-Capture (LOC) [13]: The timing waveform for a LOC test procedure is 

shown in Figure 1.6. A pair of functional clock pulses is used to launch and capture the 

transition after SEN is de-asserted. The scan enable signal does not have to switch fast for 

LOC and the second pattern of the two-pattern LOC test is generated from the functional 

response of the first pattern. 

1.2.3 Path Delay Fault Model 

Path delay fault model [14] is another fault model introduced for testing defects 

causing circuit delays to increase. Compared to the transition delay fault model, which is 

considered to be a local delay fault model to test the transition delay of selected gate inputs 

or outputs, the path delay fault model is a global delay fault model that tests the delay of 

an entire path. 
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1.2.4 Cell-aware Test 

Cell-aware test [15] is a new approach targeting transistor level defects to further 

reduce defective parts shipped, especially for advanced manufacturing technologies, such 

as FinFET technology. Since tests generated using the traditional stuck-at fault model may 

not be sufficient to detect cell-internal defects, the cell-aware test provides a new fault 

modeling approach that is based on post-layout transistor-level netlist of cells (gates) with 

parasitic effects. As a result, ATPG can then be applied to detect the cell-internal defects 

that are not covered by stuck-at patterns. 

1.3 Test Generation 

To test a given fault, certain controllable inputs (scan cells or PIs) need to be 

specified to activate the fault effect and also to propagate the fault effect to an observable 

site (scan cells or POs) for the detection of the targeted fault. D-algorithm [16] is a 

commonly used algorithm for line justifications and fault propagations during test 

generation. 

Figure 1.7 Examples of a D-frontier and a J-frontier 

To test a stuck-at-v (v = 0 or 1) fault on a given line k, the value v’ (the complement 

value of v) should be first implied (justified) on line k. The D notation [16] uses D or D’ 

to represent the value on a circuit line in the fault-free and faulty circuit. D (D’) stands for 
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1/0 (0/1) where the value above (below) the “/” is the value on a circuit line in the fault-

free (faulty) circuit. These D-values are then propagated forward to an observed output (a 

scan flip-flop or a primary output). Propagation of D or D’ to an output requires the 

implication of values on the circuit along the path through which D or D’ is propagated. 

Two data structures are used during line justifications and D propagations. One data 

structure (called D-frontier) contains those gates, whose inputs have received one or more 

Ds, while the outputs could not yet be specified. The other data structure, called J-frontier, 

contains all those gates with specified outputs but undetermined inputs. Simple examples 

of a D-frontier AND gate and a J-frontier OR gate with unspecified pins are shown in 

Figure 1.7. To justify a gate in the D-frontier, proper values are assigned to one or more of 

the gate’s inputs. If multiple choices of input assignments exist, a decision is made at the 

gate by selecting one choice of input assignments. For propagation, gate entries are selected 

from the J-frontier and necessary input assignments are made to propagate D or D’. 

Selecting gates from any of the data structures and making necessary assignments to related 

lines, may remove corresponding entries and add new gate entries. 

Figure 1.8 Test generation example 
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Test generation for a given fault using the D-algorithm is the process of clearing all 

entries in the J-frontier by making necessary assignments and decisions among internal 

lines, with at least one circuit output value being a D or D’. A test generation example for 

a s-a-0 fault using D-algorithm is shown in Figure 1.8. 

1.4 Test Points 

Additional test logic, known as test points, can be inserted into a design to improve 

its test quality. Test point insertion (TPI) techniques add control points (CP) and 

observation points (OP) to internal lines of a circuit to improve a specific objective related 

to testing [8]. 

Figure 1.9 Test point examples 

Control points are additional inputs which together with additional AND/OR gates 

set internal lines to desired values when control points are enabled. The control points are 

typically driven by dedicated scan flip-flops, rather than additional input pins on the CUT. 

AND type control points, using flip-flops driving AND gates, are used to set internal lines 
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to the value 0, by simply setting the driver flip-flop to 0 through scan shift-in without 

changing any of the functional path’s values. Similarly, OR type control points, using flip-

flops driving OR gates, are used to set internal lines to the value 1. Observation points are 

added to make internal nodes observable. This is similar to jumper cables used to observe 

internal nodes on PC boards. Observation points allow the values of the corresponding 

locations to be observed, as the states of the observation points are captured in additional 

scan flip-flops. Without observation points, these values can only be observed by 

propagating through existing paths to some scan cells or primary outputs. Examples of an 

AND-type control point, an OR-type control point, and an observation point are shown in 

Figure 1.9. 

1.5 Automotive Test 

In the fast-growing automotive electronics market, integrated circuits (ICs) must 

adhere to the most stringent requirements for high quality and long-term reliability driven 

by functional safety standards such as ISO 26262 and its Automotive Safety Integrity Level 

D (ASIL D) targets [17]. In addition to the high quality of manufacturing test, an ASIL D 

compliance for automotive ICs requires advanced and complementary test solutions that 

need to respond to the challenges posed by automotive parts and support such test 

requirements as: 

1. the ability to run in-system tests during functional operations, 

2. short test application time, due to strict limits on key-on, key-off, and 

especially idle times deployed for periodic (and often segmented [18]) on-line tests, 

3. low test power, 

4. low silicon area, 

5. the ability to deal with defect sensitivities unknown at the time of IC 

manufacturing, 

6. the potential to scale up easily. 
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1.6 Thesis Overview 

In this thesis, we present methods for reducing ATPG-produced test set size, 

involving the addition of extra test logic and new ATPG processes. The rest of the thesis 

is organized as follows. 

Motivation and the review of previous works for each technique are reported in 

Chapter 2. In Chapter 3, we introduce a control point insertion technique that reduces the 

ATPG pattern counts and test data volume with a minimized silicon area overhead by 

reusing functional flip-flops as drivers of control points [19]. Control points are inserted at 

suitable locations that resolve large internal conflicts of ATPG assignments. This helps a 

single test pattern to target more faults and reduce the overall pattern count. Since each 

control point requires a dedicated driver of an extra flip-flop, we introduce a method to 

replace the dedicated drivers by some existing functional flip-flops, while maintaining a 

similar functionality. 

In Chapter 4, we introduce a new test scheme that reduces ATPG pattern counts by 

applying patterns in a test-per-clock manner [20], instead of applying patterns after a 

complete scan load as described in Section 1.1.1. Dedicated capture-per-cycle observation 

scan chains with observation test points are added to capture additional test results during 

shift cycles of scan loading. By leveraging this new scan feature, we can generate more 

compact test patterns (also called staggered test patterns) and systematically detect many 

additional faults. In this way, fewer patterns are required to achieve the same test coverage 

compared to any conventional test-per-scan scheme. 

In Chapter 5, we introduce a deterministic two-level compression scheme named 

Stellar BIST to address the new challenges of in-system automotive test [21]. This method 

can generate effective test stimuli from a small number of stored seeds (also called parent 

patterns) through additional hardware, while the stored test patterns are generated and 

compressed through a dedicated ATPG process. With a user-specified parameter, this 

approach can provide significant trade-offs between on-chip memory usage and total test 
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application time. Finally, a summary of the methods proposed in this thesis and future 

research are given in Chapter 6. 
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CHAPTER 2 

MOTIVATION AND PREVIOUS WORKS 

As discussed in Chapter 1, ATPG tools generate deterministic test patterns to 

achieve high fault coverage. To reduce test costs, one has to reduce the number of tests 

needed to achieve desired fault coverage defined as the percentage of targeted faults that 

are detected by the tests applied to the CUT. If stored pattern tests are used for in-field test, 

then effective ways to trade-off pattern counts and memory needed to store test patterns 

should be considered. In this thesis we investigate solutions to both these issues. 

Methods to reduce test pattern counts can be classified into two classes. The first 

one is software or algorithm based that typically use heuristics to improve ATPG 

procedures to achieve lower test pattern counts [22], [23], [24], [25], [26], [27], [28], [29], 

[30], [31], [32], [33], [34], [35], [36], [37], [38]. Typically, these methods try to maximize 

the number of faults detected by a generated test. The second class of procedures insert test 

points to reduce pattern counts [39], [40], [41], [44], [46], [47]. Postprocessing may be 

used to further reduce pattern counts by eliminating redundant tests in the test sets 

generated by the ATPGs [28], [32], [33], [34], [35]. In this thesis we investigate two 

methods to use test points to reduce pattern counts. We also investigate a method to 

generate tests such that they can be derived from a subset of stored patterns which provides 

an effective way to trade off stored pattern counts and test application time. 

Next, we review earlier software-based methods to generate compact test sets (in 

Section 2.1), and methods for test point insertion (in Section 2.2), as well as methods to 

reduce test application time (in Section 2.3), and stored patterns for in-field test (in Section 

2.4). 

2.1 Software Based Methods to Reduce Pattern Counts 

Two approaches have been investigated to derive compact test sets. One is to use 

heuristics to guide ATPGs to generate compact test sets and the other is to investigate 
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methods to realize logic circuits that require small test sets to detect modeled faults. In 

Section 2.1.1, we review the methods to guide ATPGs to derive small test sets and in 

Section 2.1.2, we give a brief review of methods to realize logic circuits that require small 

test sets to detect all modeled faults. 

2.1.1 Generation of Compact Test Sets 

As discussed in Section 1.3, test for a given fault (also called a test cube) can be 

generated using the D-algorithm. The generation of test sets can use static or dynamic 

compactions, or a combination of both to achieve a small (compact) test set size. Static 

compaction methods generate effective test patterns based on a complete test set, either 

through the merging of multiple test cubes to form test patterns that can detect many faults, 

or through some postprocessing procedures by simulating the test set in a different order 

and dropping redundant tests that cannot help detecting any new fault. Dynamic 

compaction methods try to incrementally fill the unspecified bits of test cubes in an 

intelligent way to create effective test patterns that detect many undetected faults. In this 

subsection, we will review some of these test compaction methods that guide ATPGs to 

generate compact test sets. 

A dynamic and a static compaction method are introduced and compared in [24]. 

The dynamic compaction procedure gradually fills the unspecified positions of a test vector 

(targeting a single fault) to form a test pattern that detects many undetected faults, and the 

static compaction method tries to merge compatible test cubes together to form a test 

pattern after the generation of a complete test set (targeting all the faults). This paper shows 

that dynamic compaction methods may yield better performance, since static compaction 

methods require more memory and time to target all the faults. Another method, introduced 

in [25], suggests a fast and effective way that gradually generates and merges test cubes 

targeting only a set of undetected faults at a time (instead of targeting all the faults at once). 



www.manaraa.com

18 

 

COMPACTEST, introduced in [26], suggests several new concepts that can guide 

ATPG to generate a more compact test set, such as the fault ordering and the potential 

compatible fault list that can be utilized for test generation, a dynamic method to reduce 

specified positions of a test vector, and a rotating backtrace method for making ATPG 

decisions. Some other methods, introduced in [22], [23], [27], [28], [29], [30], [31], focus 

on similar concepts as using fault ordering, compatible faults, or other ATPG decision 

guidance to get compact test sets. 

After obtaining a complete test set, some of the test patterns can still be redundant 

(test patterns with all the detected faults that are already covered by other test patterns). 

Therefore, the test set can be further compacted by dropping test patterns that cannot detect 

any new fault. Several postprocessing procedures are introduced in [28], [32], [33], [34], 

[35]. They use the fault detection profiles from the pattern simulation results to either come 

up with certain pattern simulation orders to drop redundant test patterns, or directly get a 

minimal test set based on the fault detection information. 

2.1.2 Synthesis of Easily Testable Circuits 

Typically, test problems are not considered until a design is completed. From a 

testing point of view, test aspects can be specified as some of the design criteria at the 

design stage, which may lead to a better test solution. It has been suggested in [36] that it 

is feasible to synthesize easily testable circuits that require minimal test sets. This paper 

suggests a realization of any arbitrary logic function using a Reed-Muller Network of n 

variables (as introduced in [37], states that any Boolean function can be implemented by 

this network) and shows that it only requires n+4 test vectors to fully test the circuit, which 

is also independent of the function that has been realized. Another paper in [38] also 

presents that a minimum test set with only 11 test vectors are required to completely test 

for all multiple faults of any ripple carry adder, independent of the number of cells. 
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Therefore, if easy-to-test criteria are specified at the design phase, it could be possible to 

synthesize circuits with minimal test sets that can be easily obtained. 

Another way to modify a design to make it easy-to-test is using test point insertion 

techniques, which will be discussed in Section 2.2. 

2.2 Test Point Insertion 

In this section, we will discuss the motivation for test point insertion and review 

some test point insertion (TPI) techniques for different test purposes and present a TPI 

technique investigated in this thesis. 

2.2.1 Motivation for Test Point Insertion 

As discussed in Section 1.4, test points are extra test logic inserted into a design to 

gain additional controllability or observability of some internal nodes. This may help detect 

some hard-to-detect faults or to control/observe an internal node for some other test 

concerns. Since test points also require additional chip area, the most significant task for 

TPI is to find a limited number of test point locations that are most effective to achieve 

desired test goals. Due to different application purposes, different methodologies of finding 

optimal test points may need to be developed. 

In Section 2.2.2, we review TPI techniques for testability improvement that helps 

detect hard-to-detect faults. In Section 2.2.3, we review TPI techniques proposed to 

improve test pattern counts. We give a detailed review of a TPI technique that targets the 

reduction of ATPG pattern counts and test data volume, which we also investigated to 

improve area overhead required for this method. 

2.2.2 Test Point Insertion for Testability Improvement 

As discussed in Chapter 1, BIST technique generates pseudo-random test patterns 

for self-testing a design. Although BIST has certain advantages, the low detection 

probabilities of faults that are pseudo-random-pattern-resistant (also called hard-to-detect) 
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continues to be a problem. To overcome this, the TPI approach is developed for improving 

random pattern testability. With the help of test points, random-pattern resistant faults are 

rendered random pattern detectable. 

To detect random-pattern-resistant or hard-to-detect faults, test points are inserted 

at certain nodes of the design to improve testability of targeted faults. Testability can be 

improved by improving controllability and/or observability [8]. Controllability is used to 

determine the difficulty of setting an internal line to the value 1 or 0, while observability is 

used to determine the difficulty of driving a fault-effect from an internal line to a primary 

output or a pseudo-primary output (a scan flip-flop). 

Several empirical methods for testability measurements have been proposed to 

guide test point placement [39], [40], [41], [42], [43], [44]. Circuit testability is estimated 

either through exact fault simulation or approximate measures. To avoid the large CPU-

time that fault simulation requires, approximate measures are used. This provides a less 

time-consuming way to characterize controllability and observability information without 

applying any additional input vectors. The Sandia Controllability/Observability Analysis 

Program (SCOAP) [45] is one such measure and an easy-to-compute method for testability 

measurement. It can be used to guide ATPG and the placement of test points. 

A digital design typically consists of combinational cells (such as AND gates, OR 

gates, inverters, etc.), sequential cells (such as flip-flops or latches), and the 

interconnections that exist between them. SCOAP [45] defined six metrics to calculate 

controllability/observability values. Associated with each node, these measures are as 

follows: combinational 0-controllability (CC0), combinational 1-controllability (CC1), 

combinational observability (CO), sequential 0-controllability (SC0), sequential 1-

controllability (SC1), and sequential observability (SO). For a combinational node (a node 

that is the output of a combinational cell), combinational controllability (CC) is defined as 

the minimum effort to justify a 0 or 1 at the node. Likewise, combinational observability 

(CO) is defined as the minimum effort to propagate the value on that node to a primary 
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output. Sequential metrics are defined in a similar way for a sequential node that is the 

output of a sequential cell. 

The controllability and observability of each individual cell is calculated to 

determine the difficulty of setting the node to a particular value. The controllability of an 

output is calculated by first checking all possible input assignments that achieve the desired 

output value, and then taking a minimum value of the sum of the controllability values of 

its inputs. The observability of an input of the cell is calculated by the observability of its 

output, plus the sum of the controllability of other inputs that sensitize the path to the output 

at minimum cost [45]. The calculation for an AND gate is shown in Figure 2.1. 

Figure 2.1 Controllability/observability calculation 

For an entire digital design, the process of computing controllability and 

observability can be divided into two phases [45]. At the beginning of Phase One, 

controllability and observability values have not yet been assigned. Combinational 

controllability values of primary inputs are initialized to 1, while sequential controllability 

values of primary inputs are initialized to 0. All other nodes’ controllability values are 

initialized to infinity. During Phase One, controllability values are computed forward from 

primary inputs and updated for each node until the numbers stabilize. Observability values 

are then computed during Phase Two. At the beginning of Phase Two, observability values 
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for all primary outputs are initialized to 0, and observability values for all other nodes are 

initialized to infinity. During Phase Two, observability values are computed backward 

from each primary output. Utilizing the controllability values that were calculated during 

Phase One, observability values are computed until all observability numbers stabilize. 

Controllability and observability are completely assigned by the end of Phase Two. Large 

controllability values may indicate nodes that are difficult to justify to specific logic values 

while large observability values may indicate nodes that are difficult to observe through 

any primary output. This information can be used to guide the TPI process and find 

potential test point locations. 

Figure 2.2 Test point insertion for testability improvement 

As shown in Figure 2.2, according to the controllability and observability measures, 

by inserting a control point at a specific node, either 1-controllability or 0-controllability 

of the node can be reduced, making it easier to justify the node as well as some forward-

traced nodes to certain logic values. In the meantime, according to Phase Two of the 
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SCOAP process, observability values of certain nodes may also be reduced after the 

insertion of control points. Similarly, by adding observation points, observability values of 

some nodes can also be reduced, making these nodes easier to be observed. 

2.2.3 Test Point Insertion for 

Reducing Deterministic Test Patterns 

Although testability-based TPI techniques are found to have an incidental decrease 

in pattern counts [23], [46], their performance in pattern count reduction is significantly 

less predictable. Several methods, introduced in [39], [40], [41], [44], [46], [47], focus on 

using test points for the purpose of test compaction. These methods model one or more 

aspects that determine the final test pattern count and improve test compaction results with 

properly inserted test points. In this subsection, we will discuss the approach proposed in 

[47] of using test points to reduce ATPG pattern counts and test data volume by modeling 

and resolving conflicts of internal assignments during the ATPG process, which is the 

approach that will be further investigated in Chapter 3. 

Figure 2.3 Conflict on internal lines 
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To detect as many faults as possible by a single pattern, these faults must become 

parallel targets, provided there are no internal assignment conflicts. Given a specific node 

in a design, two groups of faults that require opposite values at that node cannot be detected 

simultaneously. As shown in Figure 2.3, Gate G1 requires an input value of 1 to propagate 

faults in C1, whereas Gate G2 requires an input value of 0 to enable propagation of faults 

in C2. Clearly, the immediate conflict between backward implied values at G1 and G2 

precludes simultaneous detection of faults in C1 and C2 by any test pattern. In general, 

incompatible assignments made by ATPG during fault excitation, forward propagation, or 

backward implication lead to conflicts on internal signal lines that may stop the propagation 

of effects of many faults. Fortunately, by inserting appropriate control points, these 

conflicts can be successfully resolved. Note that faults in C1 and C2 could be targeted 

simultaneously, if an AND type control point (for 0-controllability) was added to the input 

of Gate G2, or an OR type control point (to achieve 1-controllability) was inserted at the 

input of Gate G1. 

Figure 2.4 Forward propagation and backward justification 
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The example of Figure 2.3 suggests that fault-blocking mechanisms can be used to 

quantify the effect of internal signal assignments on faults detected by one test pattern. 

Having a line set to a certain logic value may block forward propagation of several faults 

to an observation point. Therefore, the opposite value on that line becomes a necessary 

ATPG assignment for the same group of faults. As shown in Figure 2.4, faults in C1 and 

C2 require stem x to be set to 0, whereas faults in C3 and C4 require 1s on the inputs of the 

respective AND gates. There is a conflict at line x between the forward-implied value of 1 

and the backward-implied value of 0. 

To determine conflicts such as those illustrated in Figures 2.3 and 2.4, in [47], fault-

blocking information is forward-implied and backward-implied throughout the circuit. 

Four metrics are used to characterize the internal signal assignments during the ATPG 

process. Given node x, these metrics are defined as follows: 

⚫ Bx – the number of faults whose propagation could be halted (blocked), if node x 

was set to 0; this is equivalent to the count, in the process of backward implication, 

of how many times one needs to set x to 1 to propagate these faults through all 

relevant gates, 

⚫ bx – the same as above, but to characterize the process of backward implication with 

respect to 0, 

⚫ Fx – the number of forward-implied 1s on node x, based on earlier backward 

implication, 

⚫ fx – the number of forward-implied 0s on node x, based on earlier backward 

implication. 

For a fan-out stem x0 with fan-out branches denoted as xi, the above four metrics 

are computed using the following formulae: 

Bx0 = Bxi     (1) 

bx0 = bxi      (2) 

Fxk = Fx0 + Bxi i ≠ k    (3) 
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fxk = fx0 + bxi i ≠ k    (4) 

In addition, forward-implied F and f values can also be computed for outputs of 

different gates, based on F and f values assigned to their inputs. This is done through a 

simple structural analysis. F and f values of output node s are determined as follows [47]: 

fs = fk 

(5a) 
fs = Fk 

(5b) 
Fs = Fk Fs = fk 

fs = max {fk} 
(6a) 

fs = min {Fk} 
(6b) 

Fs = min {Fk} Fs = max {fk} 

fs = min {fk} 
(7a) 

fs = max {Fk} 
(7b) 

Fs = max {Fk} Fs = min {fk} 

The above formulae correspond to buffer (5a), inverter (5b), AND (6a), NAND 

(6b), OR (7a) and NOR (7b) gates. Once forward-implied and backward-implied 

information is known, we can measure the degree of conflicts for a given node xk as 

follows: 

cxk = min {bxk, Fxk}    (8) 

Cxk = min {Bxk, fxk}    (9) 

An example of computing metrics (8) and (9) is shown in Figure 2.5. For a stem x, 

forward-implied values on each fan-out branch are computed by the forward-implied 

values on x and the backward-implied values on other branches. 

The test point insertion steps of [47] can be summarized as follows. Following the 

observations from conflict analysis, as discussed earlier in this subsection, conflict metrics 

are first computed. F and f values are calculated for each gate, starting from the first level. 

In the meantime, B and b values are also determined when a fan-out branch is encountered. 

After traversing the entire design, conflict values of each node are calculated by equations 

(8) and (9). A sorted node list by conflict values can then be collected and used to guide 

the test point insertion process. Test points are then inserted at nodes with the largest 

conflict values. After the insertion of a test point, related conflict metrics are updated, re-
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computing backwards and forwards from the branch with the newly-inserted test point. 

Since the newly-inserted test point may also affect earlier decisions, it is also necessary to 

check whether previously inserted test points have become less effective after the insertion 

of a new test point. This is done by removing an early-inserted test point and comparing 

the conflict metrics with the current conflict metrics. The whole process will continue, until 

a predefined number of test points are inserted. 

Figure 2.5 Conflict metrics 

Similar to the control points used for improving random pattern testability, conflict-

aware control points are implemented by using dedicated flip-flops (scan cells) driving 

additional AND/OR gates. To reduce the area overhead, existing functional flip-flops can 

be selected to replace the dedicated flip-flops. In Chapter 3, we will propose a method to 

insert conflict-aware control points, while minimizing the area overhead by reusing 

functional flip-flops as drivers. 
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2.3 Test-per-clock 

In this section, we will discuss the difference between test-per-clock and test-per-

scan and review previous works applying the test-per-clock idea for both random and 

deterministic patterns to reduce test application time. 

The test application techniques used by most scan-based designs can be classified 

as either test-per-scan or test-per-clock. For a test-per-scan procedure, test patterns are 

applied only after all the scan registers have been completely loaded. The total test length 

for each test pattern is equal to the total shift length plus an additional capture cycle. 

However, in a test-per-clock process, test responses are captured every clock cycle while 

test vectors are applied. Many test schemes, introduced in [48], [49], [50], [51], [52], [53], 

[54], [55], [56], [57], [58], [59], [60], [61], [62], leverage the advantage of test-per-clock 

to apply test patterns in shorter time. These earlier methods include build-in logic block 

observers (BILBO) [54], a circular self-test path [51], [53], [55], [57], E-BIST [50], [56], 

and some techniques applying deterministic test patterns [52], [61], [62]. 

A tri-modal scan (TMS), discussed in [58], has scan cells partitioned dynamically 

to work in three modes as shown in Figure 2.6, acting as either mission memory elements 

(M mode scan cells in Figure 2.6), sources of test stimuli (S mode scan cells in Figure 2.6), 

or test response compactors (C mode scan cells with XOR gates in Figure 2.6). In the last 

two cases, scan cells form the actual scan chains. Scan chains in the stimuli mode resemble 

the conventional scan chains in the shift mode. However, test data is applied to the CUT 

every clock cycle, and these scan chains do not capture test responses. The latter 

functionality is assumed by scan chains in the compaction mode that accumulate test 

responses every clock cycle. At the same time, a single bit (per chain) of the resultant 

signature is always shifted-out. The remaining scan cells are kept in the mission mode. Test 

results propagating through the combinational part of the circuit can also reach the scan 

cells in the mission mode. These responses further circulate within the circuit and 

eventually reach the observation scan chains during the subsequent clock cycles. Since test 
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patterns are applied every clock cycle, the scheme is time-efficient and makes it possible 

to complete a test within much shorter durations than done by conventional schemes. 

Figure 2.6 Tri-modal scan architecture [58] 

Another approach is introduced in [59]. Unlike the dynamic scan structure used by 

TMS [58], this method employs dedicated shadow registers (observation points) with XOR 

gates to capture test results during the scan shift to fortuitously detect cell-aware faults with 

test patterns generated for stuck-at faults. The shadow flip-flops are directly associated 

with scan cells that are capable of observing the largest number of cell-aware faults during 

successive shift cycles. Test data of the original test patterns form additional intermediate 

test patterns during these shift cycles and test results are captured and accumulated in a 

test-per-clock fashion by the test response compactor formed by the shadow registers. 

According to the experimental results, this scheme achieves 10% – 45% less cell-aware 

test patterns with selected shadowed registers. This method can also be applied to 

fortuitously detect stuck-at faults to reduce the test pattern count. Results in [59] show that, 
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with all scan cells shadowed, this method can achieve 30% – 90% test pattern reduction 

for designs with highly observable sites (scan cells that can easily capture many fault 

effects), and for more complicated industrial designs with limited observation of faults, 

this method achieves 5% – 10% test pattern reduction for stuck-at faults after all the scan 

cells are shadowed. In Chapter 4, we will present an approach that uses a similar idea as 

[59] to insert observation test points to capture fault effects during shift cycles. Different 

from [59], we develop a dedicated test generation procedure to produce effective test-per-

clock patterns based on this test scheme. 

For a scan-based Logic Built-In Self-Test (LBIST), as introduced in [60], to 

maximize the fault detection of intermediate random patterns (test patterns obtained during 

scan shift cycles), dedicated observation points are placed at the design's internal node, 

where fault effects of a significant group of faults can propagate through. The most suitable 

locations for test-per-clock-driven observation points are identified by selecting internal 

lines with low observability, which, as discussed in Section 2.2.2, are likely to be the most 

preferable propagation paths for a large group of faults. Moreover, control points can also 

be inserted to facilitate fault propagation towards the dedicated test-per-clock observation 

points. Therefore, many faults are detectable during the shift cycles, while loading LBIST 

pseudorandom test patterns. 

The principle of test-per-clock can also be used in the context of deterministic test 

patterns [61], [62]. As proposed in [61], a test-per-clock scheme is designed to capture test 

responses for every clock cycle without mixing with other test patterns. This is done by 

using additional multiplexers to control the CUT inputs and internal D flip-flop inputs. The 

test-per-clock scan chain input sequences are generated from tests created for each 

individual fault. The tests are then applied to the CUT, while test responses are observed 

by all primary outputs and scan cells in a test-per-clock manner. Another approach 

introduced in [62], a technique that is somewhere between the test-per-scan and test-per-
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clock schemes, saves shift cycles and generates a compacted test set by reusing overlapping 

bits between former test responses and current test vectors. 

2.4 Stored Pattern Test 

In this section, we will discuss the new test schemes, known as the stored pattern 

test, that provide much shorter test application time and better test coverage than 

conventional LBIST schemes for in-system test. 

2.4.1 LBIST Test Schemes 

LBIST is a commonly used technology developed for board, system, and in-field 

test. To keep up with the demands of new technologies for a viable in-system test 

alternative, LBIST is more often used with on-chip test compression and also employs scan 

as its operational baseline. With the mass market driving safety critical systems, the 

concept of combining LBIST and test data compression has allowed several test schemes 

to rival conventional manufacturing test techniques. For devices destined for long-term 

deployment, high test coverage with a very short test application time has become crucial 

for their efficient and reliable operations. However, conventional LBIST test schemes may 

not be sustainable to meet these high-quality test demands. 

To further improve the test quality of LBIST schemes, weighted random patterns 

can be used to deal with unacceptably low fault coverage numbers given a feasible pattern 

count, [3], [4], [63]. Alternatively, desired stimuli could be obtained by perturbing 

pseudorandom vectors [3], [4], [64], [67], [68]. The bit-flipping [68] and its applications 

[69], [70] may serve as examples. Unfortunately, these schemes were heavily dependent 

on target test sets and had to be substantially resynthesized every time the test pattern 

changed, due to logic Engineering Change Orders (ECO). There are other aspects of LBIST 

functionality that also need to be worked out. For example, an LBIST scheme should be 

less vulnerable to unknown states [71], [72], or it should produce low power test patterns 

in a programmable fashion. Relevant solutions [73], [74], however, still handle primarily 
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pseudorandom test data. With these patterns, it becomes increasingly difficult to achieve 

the desired test quality, when targeting advanced fault models, not to mention random 

pattern resistant failures that need routinely test points to improve test coverage. 

2.4.2 Stored Pattern Test 

To overcome the bottleneck of test data bandwidth of conventional LBIST and to 

meet high test coverage requirements, the advent of hybrid BIST schemes are introduced 

by storing deterministic top-up patterns in a compressed form and utilizing the existing 

BIST infrastructure to obtain desired test stimuli [23], [75], [76], [77], [78], [79], [80], [81]. 

If BIST is reused to handle compressed test data, then underlying encoding schemes 

typically take advantage of test cubes' low fill rates (specified scan cells to detect a fault). 

Solutions in this class include LFSR coding [82], static [83], [84], [85], [86], [87], [88], 

[89] and dynamic [7], [90], [91] LFSR reseeding. They are comprehensively surveyed in 

[92] and [93]. Interestingly, all test data could ultimately be stored in an on-system 

memory, provided that an efficient-enough test compression scheme is deployed. In such 

a case, stored deterministic test patterns (also known as stored pattern test) would 

eventually become a legitimate alternative for in-system test. 

Stored pattern test applies desired test stimuli (for certain test coverage targets) that 

can be derived from a minimal set of stored vectors. Typically, applied test patterns are 

derived from stored test patterns through bit complements, [5], [6]. In [5], the author 

introduces a method called Star-test that selectively flips bits of the parent patterns (seeds) 

to obtain the corresponding derivative test patterns for each pattern cluster. Two 

applications of Star-test are also introduced in [5], called Star-BIST and Star-ATPG. The 

Star-BIST scheme requires complex test logic that makes use of scan order, polarity 

between the neighboring scan cells, control points inserted between them, and a waveform 

generator. In this manner, the scan cells can behave like a ROM to encode several 

deterministic parent patterns. And derivative patterns can then be applied after flipping one 
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or more bits of the parent patterns. Another application of Star-test, called Star-ATPG, is 

also introduced in [5]. The Star-ATPG generates parent patterns based on a candidate fault 

list obtained through a fault clustering analysis. Besides the simulation of parent patterns, 

derivative patterns obtained through deterministic one-bit-flipping or random-bits-flipping 

are simulated to detect and drop additional faults. Therefore, it speeds up the ATPG 

performance. Another approach, discussed in [6], suggests that stored test set can be 

compacted through multiple bit-complements. This method introduces a dedicated 

complementation vector used to transform test patterns to other effective test patterns that 

may not need to be stored. In this case, fewer test patterns are required to be stored and all 

the derivative test patterns can be obtained through bit-complements. Therefore, with 

properly-selected complementation vectors, it is possible to further compact the test set 

using this method. 

Star-EDT, introduced in [94], is a fully deterministic test compression that uses 

both the EDT-based compression and a deterministic inversion of decompressed test 

patterns to achieve a reduced number of stored patterns and effective derivative patterns. 

Instead of flipping specific bits as described in [5] and [6], the Star-EDT determines scan-

slices of tests (scan cells of the same shift time frame) to be complemented. The EDT-

encodable parent patterns are selected among an ATPG-produced test set and the effective 

derivative patterns of each test cluster are selected among those modified test patterns, each 

with a single complemented scan-slice of the corresponding parent pattern. 

In Chapter 5, we will introduce a method called Stellar-BIST. Different from the 

selection of stored test patterns among existing test sets, as discussed in [6] and [94], this 

approach develops an ATPG-process that directly generates desired parent patterns and 

their derivative patterns. And each derivative test pattern is obtained by flipping multiple 

scan-slices of the parent test pattern, instead of the single scan-slice complement introduced 

in [94]. 
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CHAPTER 3 

MINIMAL AREA TEST POINTS FOR DETERMINISTIC PATTERNS  

In this chapter, we propose a method for reducing area overhead for the conflict-

aware control points, by reusing functional flip-flops to replace the dedicated flip-flops that 

have been used as drivers of control points, while maintaining similar pattern count 

reduction. 

The rest of this chapter is organized as follows. Section 3.1 describes the motivation 

for reducing the test point area. Sections 3.2 to 3.4 describe the method of reusing 

functional flip-flops as drivers for control points and the necessary verification steps. 

Experimental results using this technique on several industrial designs are presented in 

Section 3.5, followed by conclusions in Section 3.6. 

3.1 Motivation 

Conflict-aware test points, described in Chapter 2, facilitate significant reductions 

in deterministic test patterns. However, the additional non-functional flip-flops driving the 

control points inevitably introduce area overhead. Depending on the number of test points, 

the additional area overhead required for dedicated flip-flops could be high. If we could 

reuse existing functional flip-flops to replace dedicated drivers, the area overhead for test 

point insertion would be considerably reduced. We consider using functional flip-flops as 

drivers for control points in this work. 

3.2 Reuse of Functional Flip-flops 

As discussed in Chapter 2, to resolve a conflict with a large value of conflict c, an 

AND type control point needs to be added; whereas to resolve a conflict with a large value 

of conflict C, an OR type control point needs to be added to the corresponding node. 

The basic structures of control points are shown in Figure 3.1. A single control 

point consists of an AND/OR gate to set the control point to the dominating value, another 
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gate to enable it, and a dedicated flip-flop to drive the control point. Dedicated flip-flops 

added for test points are finally stitched to scan chains once the test point insertion is 

completed. All formulae referred to in this chapter are from Chapter 2. 

Figure 3.1 Control point templates 

Figure 3.2 shows computations of conflict metrics after the insertion of control 

points. Note that FR and fR implied by the dedicated flip-flops are both 0s. The original 

functional path of the control point site implies FL and fL. Before adding a control point, 

lines L and S are the same net; thus, FS = FL and fS = fL. The original conflicts can be 

calculated as CS = min {BS, fS} and cS = min {bS, FS}. According to (6a) and (6b) in Section 

2.2.3, after adding an AND control point to force the value of 0, FS of the control point is 

reduced to 0 and cS (the “0” conflict) is resolved. Similarly, by adding an OR control point, 

we can reduce fS as well as CS (the “1” conflict) of the control point to 0. 
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Figure 3.2 Conflict analysis for dedicated flip-flops 

To minimize the area taken up by control points, functional flip-flops can be used 

to replace dedicated flip-flops acting as drivers of control points. As shown in Figure 3.3, 

control points are now connected to existing functional flip-flops, instead of adding new 

scan cells. This may significantly reduce the area required for each control point. However, 

functional flip-flops may already have fan-outs. According to formulas (1) – (4) in Section 

2.2.3, forward-implied metrics (F and f values) of fan-out branches are determined by 

backward-justified (B and b) values occurring on other fan-out branches. Compared to 

dedicated flip-flop drivers where F = 0 and f = 0, the values of the same metrics for 

functional flip-flop drivers are determined by values of B and b coming from native fan-

out branches. They are no longer equal to 0. In this case, reusing functional flip-flops as 

control point drivers may not reduce the conflict degree to 0. Even worse, it may introduce 

new conflicts at a connection interfacing a control point with original logic. Although 

reusing functional flip-flops may result in higher test pattern counts due to these extra 
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conflicts, we will demonstrate that it is still possible to successfully trade-off silicon area 

and test pattern counts, by selecting appropriate driver candidates through a conflict 

analysis. 

Figure 3.3 Conflict analysis for functional drivers 

Figure 3.3 illustrates how conflict metrics can be computed using formulas (1) – 

(4). The results indicate that FR = B and fR = b. Therefore, according to (6a), Fs = min {FL, 

B} and fs = max {fL, b}. From (8) and (9) in Section 2.2.3, it follows that for the AND type 

control point, the degree of new conflict at the control point is equal to cs = min {bs, min 

{FL, B}} and Cs = min {Bs, max {fL, b}}. Conflicts due to a new flip-flop connection are 

cR = min {bR, B} and CR = min {BR, b}. Similar results can be derived for the OR type 

control point. To maintain the control point’s functionality, i.e., to reduce the 1/0 conflict 

corresponding to a control point, and to avoid introducing large conflicts, we propose to 
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select the functional flip-flops with a minimal sum of conflicts between its own F and f 

values yielded by backward justifications of other fan-out branches with the control point's 

B and b values. In this case, we can reduce the original large conflict (conflict 0 for the 

AND type control point or conflict 1 for the OR type control point), as well as keep the 

other conflicts low. We pick a proper candidate from a set of functional flip-flops that are 

“logically” close to the control point bounded by neighborhood criteria. Moreover, since 

different circuits may have different conflict degrees, a user-defined threshold is employed 

to guide a searching algorithm. Candidates with a large sum of conflicts exceeding this 

predefined threshold are not considered, and dedicated flip-flops are used instead. By 

varying the threshold, it is possible to trade-off the number of functional flip-flops versus 

the number of dedicated flip-flops. 

Figure 3.4 Control mode 
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3.3 Flip-flop Verification 

When reusing a functional flip-flop as a control point driver, newly added 

connections may form a reconvergent fan-out with the flip-flop output branches. We need, 

therefore, to verify whether connecting functional flip-flops to control points compromises 

fault propagation. To avoid test coverage loss, flip-flops failing this verification procedure 

should not be employed as drivers of control points. 

Figure 3.5 Propagation mode 

During test application, control points work in two modes: a control mode to force 

its value, and a propagation mode to allow faults to pass. In this section, we will discuss an 

ATPG-based verification for these two modes. 

Control points having their own dedicated flip-flops do not experience a 

reconvergence problem, when in the control mode. As shown in Figure 3.4(a), where an 
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AND type control point is used as an example, a dedicated flip-flop sets gate CP to 0 in the 

control mode, while a functional flip-flop may have a different assignment. Contrary to a 

control point driven by its dedicated flip-flop, a functional flip-flop acting as a driver may 

feature additional connections, as shown in Figure 3.4(b). In this case, the new connection 

added for enabling the control point may have different backward-justified ATPG-

produced values than those of its remaining fan-out branches. As discussed in Section 3.2, 

incompatible assignments made to a flip-flop are quantified as conflicts, and they are 

already considered during the conflict analysis. This inconsistency will only lead to an 

increase in pattern count with no coverage loss. Therefore, it is not necessary to perform 

an ATPG-based verification for the reconvergence issue in the control mode. 

It is not the case, however, when it comes to the propagation mode. As shown in 

Figure 3.5, the driver is set to the non-controlling value, so that faults from the other input 

can pass through the control point. Control points with a driver feeding a reconvergent fan-

out may block faults, whose only propagation path goes through the control point. Consider 

the AND-type control point. In the propagation mode, the driver is set to 1 to let faults 

propagate through the control point’s original path. As shown in the figure, faults whose 

only propagation path goes through the control point can be blocked by the value that sets 

the top OR gate to its dominating value. In this case, a functional flip-flop that precludes 

faults from further propagation cannot be considered as a driver candidate. Consequently, 

additional ATPG verification is required to check whether the candidate flip-flop is 

blocking any forward fault propagation through the corresponding control point in the 

propagation mode. 

After running the conflict analysis, the ATPG-based verification is performed by 

imposing the non-controlling value on a candidate functional flip-flop. This verification 

checks whether the implied value may block faults whose only propagation path goes 

through the control point. Clearly, candidate flip-flops passing ATPG verification will not 

cause any coverage loss due to the reconvergence problem. 
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3.4 Candidate Flip-flops Search Flow 

As discussed in previous sections, the selection of functional flip-flops to act as 

control point drivers is done within a certain (and limited) search space. For pre-layout 

designs, to avoid long paths from selected functional flip-flops to the control points, we 

select a suitable candidate among flip-flops, which are “logically” adjacent to the control 

point, while a user-defined threshold limits the total number of flip-flops checked for each 

control point. 

Figure 3.6 Tracing during locality analysis to find extra candidate flip-flops 

Figure 3.6 illustrates a search for the most appropriate flip-flop among a limited 

number of functional flip-flops “near” a given control point CP. Starting with the cone of 

logic that drives the control point, a breadth-first search is applied to find a limited number 

of candidate flip-flops within the cone. If this cone does not contain enough flip-flops, we 

gradually enlarge the search space by tracing forward from the control point and then 

tracing backward from any further off-path inputs to find more flip-flops. For example (see 
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Figure 3.6), we first check flip-flops inside cone A. Next, we may seek more flip-flops by 

visiting cone B, and then cone C, until reaching the threshold. 

The combined search flow to select a suitable functional flip-flop to be used as a 

driver of a single control point can be summarized as follows (compare Figure 3.7): 

1 Start searching for a candidate flip-flop with a minimal conflict sum within a 

predefined conflict threshold. 

2 Gradually enlarge the search space to find more flip-flops through backward 

tracing from any off-path input of the forward path of the control point. 

3 Perform ATPG verification to check fault blocking using a non-controlling value 

of the control point. 

4 Repeat steps 1 – 3, until a predefined number of flip-flops are reached. 

5 If no candidate is found, use a dedicated flip-flop to drive the control point. 

Figure 3.7 Combined search flow 
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3.5 Experimental Results 

We have conducted experiments on 10 large industrial designs with on-chip EDT 

compression logic [7]. Table 3.1 includes the characteristics of the circuits, including the 

number of gates, the number of scan cells, the number of scan chains, the number of EDT 

input and output channels, as well as the baseline stuck-at test coverage obtained with no 

test points. For all experiments, observation points are inserted as proposed in [41]. By 

setting the conflict threshold to a design-specific value, we can achieve a large fraction of 

control points working with functional flip-flops as their drivers. Therefore, by having a 

small number of dedicated scan cells to drive control points, we are minimizing the silicon 

area occupied by test points. Functional flip-flops deployed as drivers of control points are 

selected within their “logical” proximity comprising 100 flip-flops, as described in Section 

3.4. 

Table 3.1 Circuit characteristics 

 Gates Scan cells Scan chains Channels TC [%] 

D1 1.19M 72K 400 4, 4 96.95 

D2 103K 1K 10 1, 1 97.78 

D3 218K 14K 20 1, 1 99.99 

D4 2.08M 143K 400 4, 4 99.51 

D5 1.32M 52K 220 6, 6 98.13 

D6 1.04M 57K 400 4, 4 91.39 

D7 3.34M 325K 400 4, 4 96.49 

D8 2.60M 154K 1,200 12, 12 91.34 

D9 1.69M 86K 400 4, 4 97.82 

D10 2.31M 252K 490 10, 10 99.06 
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For the designs given in Table 3.1, test points are inserted using the method 

presented in [47] which uses dedicated flip-flops to drive control points and by using 

functional flip-flops as drivers of control points as proposed in this chapter. ATPG was run 

on the 10 designs. Although our focus is on showing how pattern count reduction depends 

on sharing functional flip-flops with control points, observation points are also added to 

each design by following the rules presented in [47]. Consequently, Table 3.2 provides 

stuck-at test coverage (column TC) after TPI, the total number of control points (CPs), the 

total number of observation points (OPs), and the reuse ratio, which is defined as the 

percentage of control points using functional flip-flops as drivers. For all test cases, at least 

a 90% reuse ratio is achieved. Therefore, for more than 90% of control points, we can 

minimize the area, without adding extra scan cells for test point insertion. 

Table 3.2 Reuse of functional flip-flops ATPG results 

 TC [%] CPs OPs Reuse ratio [%] 

D1 96.97 1,364 1,636 99.7 

D2 98.78 300 300 90.0 

D3 100.00 379 701 91.3 

D4 99.55 750 750 95.0 

D5 99.42 260 260 94.2 

D6 92.11 600 600 97.2 

D7 96.52 2,973 3,027 90.4 

D8 91.66 770 770 100.0 

D9 97.99 944 1,056 95.2 

D10 99.70 1,500 1,500 91.3 
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Table 3.3 Pattern counts for dedicated (D) and functional (F) drivers (stuck-at) 

 

Pattern count PC 
increase 

[%] 

Pattern reduction 

D F D F 

D1 1,628 1,693 4.0 1.89 1.82 

D2 4,260 4,588 7.7 2.54 2.36 

D3 4,102 4,425 7.9 2.68 2.48 

D4 8,744 8,896 1.7 2.75 2.70 

D5 24,486 24,881 1.6 1.34 1.32 

D6 7,606 7,791 2.4 2.02 1.97 

D7 2,590 2,619 1.1 1.36 1.34 

D8 6,424 6,486 1.0 3.10 3.07 

D9 9,280 9,397 1.3 1.71 1.69 

D10 2,033 2,123 4.4 2.16 2.07 

Average 7,115 7,289 3.3 2.16 2.08 

 

Table 3.4 Pattern counts for dedicated (D) and functional (F) drivers (transition) 

 

Pattern count PC 
increase 

[%] 

Pattern reduction 

D F D F 

D1 5,952 4,864 -18.3 2.47 3.03 

D2 2,304 2,176 -5.6 3.62 3.83 

D3 9,152 8,128 -11.2 3.32 3.74 

D4 15,232 15,232 0.0 2.57 2.57 

D5 8,704 9,472 8.8 3.24 2.98 

D6 8,704 7,872 -9.6 2.10 2.33 

D7 4,288 4,544 6.0 1.61 1.52 

D8 13,362 13,924 4.2 2.47 2.37 

D9 12,992 13,184 1.5 2.00 1.97 

D10 832 896 7.7 6.92 6.43 

Average 8,152 8,029 -1.6 3.03 3.08 
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Compared to the control points using dedicated flip-flops, reusing functional flip-

flops reduces the total number of scan cells and minimizes the area required by the control 

points. As presented in Section 3.2, using existing functional flip-flops may result in 

additional conflicts. Hence, replacing dedicated flip-flops by functional flip-flops may 

increase the total pattern count. Tables 3.3 and 3.4 show comparisons that address this 

problem for both stuck-at faults and transition faults. Here, the pattern counts while using 

dedicated (functional) flip-flops are shown under D (F) in Columns 2 and 3, and the 

percentage increase in a pattern count, when functional flip-flops are used, is given in the 

next column. In the last two columns, we give the factor by which the pattern counts are 

reduced, relative to the pattern counts for designs not using control points. The results 

indicate that with an average 3.3% increase in pattern count for stuck-at faults, conflict-

aware control points with functional flip-flops as their drivers can achieve a significant 

compression during deterministic test pattern generation. Interestingly, for transition faults, 

functional drivers reduce the pattern counts for D1, D2, D3, and D6, with an average 4.7% 

pattern count increase for other designs. 

3.6 Conclusion 

In this chapter, we have presented a method to insert conflict-aware control points 

using functional flip-flops as drivers. This approach allows the reduction of the silicon area 

required by control point test logic. The experimental results on industrial designs show 

that a 90% reuse ratio can be achieved under certain criteria. The conflict-aware test points 

reusing functional flip-flops can still achieve a significant reduction (2x – 3x) in pattern 

count, compared to baseline designs without any control points, similar to the control points 

using dedicated flip-flops. 
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CHAPTER 4 

STAGGERED ATPG WITH CAPTURE-PER-CYCLE 

OBSERVATION TEST POINTS 

The test points discussed in Chapters 2 and 3 are capable of resolving large internal 

conflicts to achieve the goal of reducing the overall test data volume. This TPI technique 

adds additional hardware to each CUT, while test patterns are still generated and applied 

using the same test scheme. In this chapter, we will leverage the characteristic of 

observation test points (as introduced in Section 2.2) and propose a new staggered test 

pattern generation scheme. This method produces deterministic stimuli in a test-per-clock-

based process by using dedicated capture-per-cycle observation test points. We also 

introduce a new test generation process to adapt to the new test scheme. Therefore, the 

final test set size can be further reduced. 

This chapter is organized as follows. Section 4.1 describes the motivation of 

deterministic tests-per-clock. Section 4.2 introduces a scan architecture that is used in 

conjunction with the proposed staggered ATPG. Section 4.3 presents the staggered test 

generation technique. An ATPG-oriented method and a simpler method using fault 

propagation is proposed in Section 4.4 for identifying the most suitable locations for 

capture-per-cycle observation test points. Experimental results obtained for large industrial 

designs are discussed in Section 4.5, and the chapter concludes with Section 4.6. 

4.1 Motivation 

The idea of test-per-clock, as introduced in Section 2.3, utilizes the “wasted” scan-

shift-cycles to apply additional tests. These additional tests that are applied during shift 

cycles can only be effective when the test responses are captured properly. An easy way to 

achieve this is having additional observation sources to capture corresponding test results, 

so that additional faults can be detected. In this case, for every individual test cycle, tests 
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can be applied to the CUT. Therefore, we may also consider generating proper tests, based 

on every clock cycle instead of generating tests for a complete scan. 

Figure 4.1 Scan architecture 

4.2 Test-per-clock Scan Architecture 

In a conventional test-per-scan scheme, the operational rule is to feed serial inputs 

of the scan chains with test stimuli and capture test responses through scan chain serial 

outputs. All scan cells are typically controlled by a single scan enable signal. Therefore, all 

scan chains are functionally indistinguishable, i.e., they all either shift data in and out or 

capture test results. In contrast to this paradigm, a test-per-clock architecture adapted in 

this work operates as shown in Figure 4.1. The majority of memory elements form 

conventional scan chains (white blocks in the figure), i.e., they operate either in the shift 

mode (with the asserted scan enable) or in the capture mode. Scan cells serving the 

observation points (the grey boxes in Figure 4.1) are arranged into separate scan chains 
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operating exclusively in the compaction (capture) mode. These compaction chains 

accumulate test responses, using XOR gates interspaced between their successive cells. A 

scan cell associated with a single observation point is shown in Figure 4.2. The global test 

point enable (EN) signal activates observation points in the test mode, and disables them 

in the mission mode. Test results received from CUT (input D) are XOR-ed with data 

provided by another scan cell, thus incorporating shift and capture functionality within a 

single clock cycle. Although the capture-per-cycle observation test points may only work 

in the compaction mode, it is possible to modify them for the sake of scan chain integrity 

test, as shown in [58]. 

Figure 4.2 Observation point 

Once a test is launched, test data are serially fed into the conventional scan chains 

through the scan serial inputs, while the chains’ content drives the CUT. Note that after 

every single shift cycle there is a test pattern presented to the CUT. Test responses 

corresponding to these patterns are captured and accumulated by the observation test point 

chains every single shift cycle while regular scan cells are still operating in the shift mode 

(compare with Figure 4.1). As a result, it becomes possible to stagger ATPG patterns based 

on this functionality. The key idea of our ATPG is to deploy the capture-per-cycle 
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observation points to record data, while regular scan cells are still being loaded. It will also 

generate more compact test patterns by utilizing the subsequent vectors gradually filling 

the regular scan chains. 

4.3 Staggered ATPG 

A conventional ATPG framework typically comprises the actual test pattern 

generation and fault simulation. First, a test cube, i.e., a group of specified scan cells, is 

produced to detect a single fault. A test cube is generated to activate the fault effect at the 

fault site, as well as to sensitize a propagation path towards an observable detection gate 

(scan cells or POs). Successive test cubes are kept in a buffer, where, at some point, they 

become subject to a cube merging process. Depending on specified bits, test cubes with no 

conflicting assignments are considered compatible and can be merged to form a single test 

pattern (Figure 4.3). ATPG continues test generation and cube merging until a certain 

number of patterns are created. Fault simulation usually follows to determine all faults 

detected by the newly formed tests. It is clear that ATPG iterates, until all faults are 

covered. With the capture-per-cycle observation test points allowing tests every clock 

cycle, the above test-per-scan-based ATPG can be modified to generate staggered test 

patterns that fully leverage the test-per-clock scan design of Section 4.2. 

Figure 4.3 Compatible test cubes 

1 X 0 X X 1

0 0 1 1 X X

incompatible

X 0 0 1 1 X

1 X 0 X X 1

1 0 0 1 1 1
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Figure 4.4 Scan specifications of test cubes during shift cycles 

4.3.1 Test Cube Merging 

As mentioned earlier, a test pattern can be obtained as a superposition of several 

compatible test cubes. With the test-per-scan paradigm in place, conflicting test cubes 

cannot be merged to form a single pattern. However, the test-per-clock approach provides 

an opportunity to merge even conflicting test cubes. Consider test cubes t1 and t2 shown in 

Figure 4.4. It appears that loading vector t2 suffices to apply test pattern t1 (it occurs at shift 

cycle c4), provided the corresponding specified values (grey boxes) in both vectors are the 

same. In this case, having observation points that capture test results every clock cycle, one 

can generate staggered patterns based on mutually shifted test cubes, without 

compromising the fault coverage. Figure 4.5 is another example where one can make 

incompatible test cubes mergeable. This is achieved by shifting (adjusting) cubes along 

scan chains to form a more compact pattern, which activates all specified values of every 

initial test cube in a test-per-cycle manner. For example, a test pattern formed in Figure 4.5 

will apply successive specified bits as follows: 

• bits A during the fifth shift cycle, 

• bits B during the sixth cycle, 
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• bits C during the seventh cycle, and 

• bit D also during the seventh cycle. 

Figure 4.5 Test cube merging 

If every potential fault effect can be recorded by at least one capture-per-cycle 

observation test point, this type of shift-and-merge process can be performed to further 

decrease the total number of required test patterns that need to be applied. Clearly, this 

approach is also well positioned to reduce the effective number of ATPG-produced test 

cubes. This is because many fortuitous detections are likely to be recorded by fault 

simulation of staggered patterns, as discussed below. 

The test cube merging integrated with the staggered ATPG can be summarized as 

follows: 

1. First, create an empty merge array M. 

2. Merge test cube t with M, provided that it is compatible with the content of M. 



www.manaraa.com

53 

 

3. If t is incompatible with M, check whether fault effects caused by t can be 

recorded by any observation point. 

4. If so, inspect compatibility of t with M, by shifting t towards the scan tail end 

until a shifted replica of t becomes compatible with M (then merge t with M); if all shift 

positions have been unsuccessfully tried, then skip t. 

5. After traversing the entire test cube buffer, generate a pattern based on the values 

gathered in M. 

6. Reset M and repeat these steps until all relevant test cubes are examined. 

Before the above procedure is carried out, it is possible to presort the test cube 

buffer, so that test cubes targeting faults that do not propagate to any observation points 

(faulty effects are exclusively captured by regular scan cells) are examined prior to the 

remaining test cubes. Note that these test cubes cannot be shifted along scan chains, since 

their capture cycles occur only at particular time frames following completion of the scan 

upload phase. Test cubes that propagate errors to observation points having a much more 

flexible capture principle (virtually every intervening scan shift cycle may record erroneous 

responses) can be positioned at any suitable time frame within the scan uploading 

sequence. As one may expect, experimental evidence indicates that this approach provides 

better results in terms of test cube mergeability. It is also worth noting that the test cube 

buffer is gradually refilled as ATPG keeps adding new test cubes for successive faults. 

Therefore, the procedure presented is fully compatible with the conventional ATPG flow. 

4.3.2 Fault Simulation 

Test cubes typically target only a small number of faults while the remaining ones 

are detected by simulation. After test cube merging, all bits that remain unspecified are 

also filled with certain values, such as, for example, pseudorandom ones. Unlike a 

conventional test-per-scan ATPG using a single fault simulation pass per pattern, a 

staggered ATPG process requires several fault-simulation runs to analyze every 
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intermediate stimulus generated during every shift cycle, and to drop all faults detected this 

way. In other words, besides a fault simulation pass corresponding to the original test 

pattern, additional (staggered) test patterns are formed and fault simulated with cell 

constraints disabling regular scan cell-based observation sites. This is done by shifting the 

current pattern towards the scan front end, i.e., in the opposite direction of the test cube 

compatibility check. The total number of staggered patterns depends on the scan size. It is 

expected that, in addition to faults targeted by the original pattern and its merged 

derivatives, more faults can be detected by simulation, compared to a conventional test-

per-scan ATPG. In summary, the proposed staggered ATPG flow consists of the following 

steps: 

1. Generate test cubes for selected faults. 

2. Generate a derivate test pattern by first merging the test cubes targeting faults 

that propagate to regular scan cells only, and then the remaining test cubes; fill all 

unspecified bits. 

3. Fault simulate the original test pattern. 

4. Fault simulate staggered patterns, by appropriately shifting the original test 

pattern. 

5. Repeat steps 1 – 4, until no faults remain on a fault list. 

Since a staggered test pattern is formed by scan cells' values of shifted test patterns 

plus some of the capture data of previous test patterns of corresponding scan cells. It is 

worth pointing out that staggered test patterns would mainly rely on their deterministic 

parts (shifted versions of originally generated bits) to detect faults. Although previously 

captured data also form parts of the staggered patterns and may detect some faults during 

simulation, these data are highly order-dependent, and it also has been found that additional 

faults detected by the captured data are not having a significant role in determining the 

final pattern count. Therefore, the simulation order of the test patterns is not considered as 
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a factor to our staggered tests, and the captured data parts can be ignored (treated as 

unknowns) during the simulation. 

4.3.3 Staggered ATPG with EDT 

When on-chip test data compression (EDT) is enabled, ATPG-generated test cubes 

must pass an additional compression check, before forming a test pattern. This check is 

performed during test cube merging to determine whether the merged test can be encoded. 

Otherwise, the current test cube must be skipped, even though it has no conflict 

specifications with the merge array. 

The proposed staggered ATPG can be easily adopted to work with the additional 

EDT compression check, by performing the check whenever a generated test cube or a 

shifted test cube version is being merged to the merge array. Although this may lead to a 

degradation in the performance of test cube merging as compared to a staggered ATPG 

without EDT, our staggered ATPG can provide additional flexibility to shift-and-merge a 

test cube in a situation where a merged cube cannot be compressed. 

4.4 Observation Test Points Selection 

A proper selection of capture-per-cycle observation sites is essential for successful 

application of the staggered test generation scheme presented in the previous section. They 

can be either picked to improve the cube merging efficiency, or to increase the number of 

faults detected by fault simulation. 

A given test cube excites a fault and propagates the fault effect to at least one 

observation point, including regular scan cells or primary outputs. Any circuit’s internal 

node that has been assigned values, so that the fault effect can propagate through, is called 

a detection gate of the corresponding test cube. As shown in Section 4.3 (see also Figure 

5.5), not every test cube can be subject to the shift-and-merge procedure. Only test cubes 

with detection gates being observable during shift cycles can be adjusted along scan chains 

for compatibility checks. In other words, only test cubes activating several dedicated 
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capture-per-cycle observation points can have multiple (flexible) locations in the merge 

array. Clearly, the more test cubes with detection gates acting as dedicated observation 

points, the better test cube merging results one may expect during the staggered test 

generation. 

Once the merging of compatible test cubes is completed, we assume that all the 

remaining unspecified bits are filled with pseudorandom values. The resultant fully 

specified patterns are fault simulated and all detected faults are dropped. This includes 

faults detected by staggered test patterns as well as faults fortuitously covered by a fully 

specified pattern. It is worth noting that test patterns used in this process are formed by all 

shifted replicas of original patterns combined with captured test responses of former test 

patterns. Clearly, the capture-per-cycle observation test points need to be placed at proper 

locations to capture faults playing a significant role in determining the final pattern count 

of the staggered ATPG. 

4.4.1 Observation Test Points Selection 

Using ATPG-detection 

In the early stages of our experiments, we used two test point insertion techniques 

[41], [95], which have already proven to be successful in reducing test pattern counts and 

test application time. Although making those test points capture-per-cycle observation sites 

may allow one to detect many faults, the very same observation points are seldom 

sensitized by a reasonable number of test cubes. Consequently, the method that has 

demonstrated its superiority in a convincing manner, which seemed to offer a practical and 

economical way to get sufficient coverage of randomly-detectable faults, employs regular 

scan cells. They were found to be good observation sites for both test cube generation and 

fault detection. They can also serve as the capture-per-cycle observation test points for the 

staggered test patterns. 
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Figure 4.6 Observation points insertion 

We deploy an approach similar to that of [59], by inserting observation points 

directly at the inputs of certain regular scan cells to capture test results that otherwise would 

be lost, due to the scan shift mode separating the scan cells from a combinational part of a 

design (see Figure 4.6). The same method avoids the risk of having observation points 

inserted at the internal nodes of the design’s functional paths. The candidate scan cells are 

selected based on fault detection profiles obtained by counting how many target faults are 

observed (and thus detected) by every individual scan cell during a baseline (reference) 

ATPG run. Although the staggered ATPG may behave differently, this information can 

still represent the likelihood of fault detection with respect to every individual scan cell. 

Moreover, additional faults may propagate through sensitized paths set by the test cubes 

towards scan cells that are likely to be reached. Note that linking observation points with 
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scan cells having the highest fault detection counts (targeted by test cubes), makes several 

test cubes "flexible". Otherwise, we cannot shift and merge test cubes, since the fault-effect 

targeted by the test cube cannot be captured by any observation point. Because of silicon 

area constraints, we only select a limited number of scan cells (approximately 1% – 2% of 

a design's total number of scan cells) with the largest fault detection counts. Observation 

test points described in Section 4.2 are inserted at these scan cell inputs. 

4.4.2 Observation Test Points Selection 

Using Fault-propagation 

Observation test points selection, based on the ATPG-detection-profile, requires a 

complete reference (baseline) ATPG run to determine the scan cells with good test cube 

detection that is based on test generation information recorded by the ATPG tool. It may 

not be accessed easily from the user-side. Therefore, this test points selection approach can 

be time-consuming and tool dependent. We propose a simpler optional approach to select 

locations for the observation test points using a fault-propagation analysis. 

Figure 4.7 Fault propagation analysis 
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With the same idea of selecting suitable scan cells that can cover more test cubes, 

as well as detect additional faults during staggered pattern simulation, instead of learning 

the information from a complete ATPG run, we can perform a structural tracing based on 

the fault list to obtain a fault propagation profile for the scan cells. The propagation analysis 

is shown in Figure 4.7 and can be described as follows: 

1. For each fault in the fault list, we assign a value “1” at the fault site for counting 

the forward propagation of the fault. 

2. We divide the value evenly on every fan-out stem encountered (modeling random 

fault propagation decisions with equal probabilities) and propagate the fraction towards 

every fan-out branch. The calculation for a total number of F faults propagating through a 

fanout stem with n fanout branches is shown in Figure 4.7(a) and Figure 4.7(b) shows an 

example of the fault propagation analysis. 

3. We record the fault propagation value received by each scan cell. 

4. After traversing the entire design, we sort the scan cell list by the fault 

propagation value and select a predefined number of scan cells with highest fault 

propagation values as locations of our observation test points. 

Note that, the fault list used for this approach is not the entire fault list of a design. 

We observe that for most designs, a large proportion of the faults are some easy-to-detect 

faults that can be detected by the simulation of a few test patterns at the beginning of an 

ATPG process. These faults act like “noise” to our fault propagation analysis and detecting 

these faults by our observation test points would not help to reduce the final pattern count. 

Therefore, we prune the fault list by removing those faults detected at the early-stage of an 

ATPG process and use the reduced fault list (also called as tail-end fault list) for our 

observation test points selection. Although obtaining such a tail-end fault list may still 

require an ATPG run, this ATPG process normally stops at an early stage and has a much 

shorter run time than a complete ATPG run. 
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4.5 Experimental Results 

The performance of the staggered ATPG working with the capture-per-cycle 

observation test points, has been verified experimentally on 10 large industrial designs with 

on-chip EDT-based test compression [7]. They represent different design styles, different 

scan methodologies, and mirror the latest technology nodes. The basic data regarding these 

circuits, such as the number of gates, the fault population, the number of scan cells, the 

number of EDT channels, the number of chains, and the length of the longest scan chain 

are listed in Table 4.1. Although longer scan chains may help to get more staggered test 

patterns, we only choose reasonable scan chain length for each test case. 

Table 4.1 Circuit characteristics 

 Gates Faults Scan cells Channels Chains 
Chain 
length 

D1 1.69M 4.99M 87K 4 400 219 

D2 1.19M 4.48M 72K 16 400 189 

D3 2.08M 7.17M 143K 4 400 371 

D5 1.04M 1.90M 57K 4 400 146 

D6 1.38M 3.78M 93K 10 169 555 

D7 2.53M 4.93M 206K 10 374 558 

D8 1.09M 2.94M 75K 10 141 546 

D9 4.04M 8.76M 199K 10 364 548 

D10 3.35M 15.15M 331K 4 400 829 

 

The experimental results for stuck-at faults are presented in Table 4.2. Columns 

“Pattern count” gather the key data for both examined scenarios – the number of ATPG-

produced test cubes in line with the conventional scenario and its staggered counterpart. In 

all experiments reported in this section, the staggered ATPG results were obtained after 

inserting observation test points, as discussed in Section 4.4, i.e., by using the method 
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working with the fault propagation profile, and the fault list is pruned to a 90% tail-end 

fault list (removing the first 90% of the faults that are detected by a few patterns in the 

early stage of an ATPG run). The total number of test points is kept to below 2% of the 

entire scan cell population (see column “Observation points” of the table). This percentage 

is an industry-wide accepted standard. As can be seen, the staggered ATPG yields a visible 

pattern count reduction in all examined cases. It varies from 1.2x to 3.0x for otherwise 

similar test coverage numbers provided by the conventional ATPG. 

Table 4.2 Experimental results (stuck-at faults) 

 

Conventional ATPG Pattern 
reduction 

(x) 

Staggered ATPG with OPs 

Coverage 
[%] 

Pattern 
count 

OPs 
Coverage 

[%] 
Pattern 
count 

D1 95.89 11,523 2.98 1,600 95.89 3,870 

D2 96.45 2,010 1.46 1,400 96.46 1,377 

D3 97.24 7,299 1.69 2,800 97.26 4,325 

D4 92.92 8,697 1.97 1,100 92.92 4,422 

D5 97.68 8,235 1.58 1,800 97.68 5,228 

D6 97.64 1,838 1.85 4,000 97.64 993 

D7 95.64 2,127 2.05 1,500 95.65 1,036 

D8 99.29 1,002 1.17 4,000 99.29 860 

D9 96.54 3,129 1.86 6,000 96.54 1,682 

D10 99.86 1,149 1.39 1,500 99.86 824 

Average 96.92 4,701 1.80 2,570 96.92 2,462 
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Table 4.3 Experimental results (transition faults) 

 

Conventional ATPG Pattern 
reduction 

(x) 

Staggered ATPG with OPs 

Coverage 
[%] 

Pattern 
count 

OPs 
Coverage 

[%] 
Pattern 
count 

D1 91.22 38,493 5.68 1,600 91.23 6,779 

D2 94.31 5,090 1.24 1,400 94.34 4,099 

D3 91.87 16,473 1.49 2,800 91.95 11,042 

D4 89.29 17,085 2.05 1,100 89.31 8,326 

D5 94.32 21,132 1.68 1,800 94.32 12,566 

D6 94.91 2,210 1.97 4,000 94.94 1,120 

D7 92.64 3,368 3.61 1,500 92.74 932 

D8 95.24 1,417 1.28 4,000 95.25 1,104 

D9 95.78 10,528 2.17 6,000 95.79 4,859 

D10 98.79 5,471 1.50 1,500 98.80 3,639 

Average 93.84 12,127 2.27 2,570 93.87 5,447 

 

In Table 4.3, we present the experimental results for transition faults for the same 

test cases with the same observation test points we used for stuck-at faults in Table 4.2. We 

may consider the scan cells' data at every two adjacent shift cycles as a pair of launch-and-

capture tests for the two-cycle transition test, as introduced in Section 1.2.2. In this case, 

we can apply our staggered ATPG to two-cycle tests, like transition faults, by treating the 

scan shift data at every clock cycle as an individual LOS test. Although handling the at-

speed application of transition patterns can be a difficult task, by applying the idea of 

staggered ATPG, we can get a good pattern count reduction (an average of 2.27x for 

transition faults shown in Table 4.3). And this may lead to the test generation of staggered 

two-cycle test patterns for stuck-open faults, which require two test patterns that do not 

need to be applied at-speed. It may also be possible to gain some “free” test coverage for 

these faults that require two-cycle test patterns, during the test application of staggered test 

patterns that are generated only for stuck-at faults. 
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It is worth noting that fault simulation used in the experiments does not account for 

an unlikely event of aliasing that may occur when fault effects are masked within scan 

chains driven by the observation test points. The likelihood of such an event is fortunately 

extremely small [96], since these scan chains form finite memory devices, where after 

several clock cycles (depending on a fault injection site) an error is shifted out. Moreover, 

missed faults remain ATPG targets. 

4.6 Conclusion 

In this chapter, we present a staggered ATPG working synergistically with the 

capture-per-cycle observation test points. This approach generates highly mergeable 

deterministic test patterns and detects many additional faults through staggered pattern 

fault simulation. The observation test points are inserted at the scan cell inputs based on 

the fault propagation profiles. This process has a minimum impact on a design, compared 

to other test point insertion techniques. At the same time, test responses captured every 

clock cycle by means of the observation points visibly improving the fault observability. 

Compared to the method introduced in [59], our approach develops a constrained ATPG 

that produces effective test-per-clock patterns and requires fewer observation points (no 

more than 2% of the design’s total scan cell count), to achieve good test pattern reduction. 

Experimental results obtained for large industrial designs demonstrate – on average – a 

1.8x pattern count reduction for stuck-at patterns while preserving the original fault 

coverage and may also be applicable to two-cycle patterns such as transition faults. 
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CHAPTER 5 

DETERMINISTIC STELLAR BIST FOR IN-SYSTEM TEST 

Both the TPI technique introduced in Chapter 3 and the staggered ATPG presented 

in Chapter 4 focus on reducing the test set size for ATPG-produced deterministic patterns. 

However, pseudorandom patterns still play a significant role for in-system test. As it is 

becoming increasingly difficult for conventional test solutions that handle pseudorandom 

patterns to achieve high test quality for advanced in-system test, these pseudorandom-

pattern-based solutions can be replaced by the stored pattern test method, by obtaining 

desired test stimuli through stored deterministic test patterns, and thus it is important to 

produce a minimal but effective test set for stored pattern test solutions. 

In this chapter, we propose the Stellar BIST approach. While it inherits some 

underlying principles of its predecessors [5], [94], including primarily a concept of 

deterministic parents and their derivatives, the new scheme, in vivid contrast to the earlier 

techniques, produces derivatives of a given encodable parent pattern, by complementing 

its bit slices several times rather than just once, as done in [94], during a single test pattern 

application. An additional mechanism skews multiple complements to enrich population 

of patterns. As a result, the scheme offers flexible trade-offs between test application time 

and test data volume on a scale that is not matched in earlier test data compression schemes. 

Consequently, Stellar BIST outperforms the state-of-the-art on-chip test compression 

solutions in terms of processing time needed to arrive with the required test cubes, the 

corresponding fault crediting results, and eventually compressed test patterns. 

This chapter is organized as follows. In Section 5.1, we introduce the predecessor 

of this work and the basic principle of test clusters used in our work. The new Stellar BIST 

test scheme and the implementation flow are proposed in Sections 5.2 and 5.3. 

Experimental results are discussed in Section 5.4, and conclusions are given in Section 5.5. 
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Figure 5.1 STAR-EDT architecture [94] 

5.1 STAR-EDT Architecture 

The proposed test solution of this chapter can be considered as an evolutionary step, 

that builds on the Star-EDT scheme [94] discussed in detail in this section for the sake of 

reference. A test set produced within this framework, is comprised of test vector clusters. 

Each cluster consists of a single ATPG-produced and EDT-encodable parent pattern and 

several children derived from the parent, by complementing all bits of a scan shift cycle. 

A careful selection of these cycles may produce a group of valuable stimuli. These vectors, 

due to a slight departure from the original parent sequence, detect many faults that 

otherwise would need to be targeted separately. 
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Figure 5.1 sketches the Star-EDT architecture. An n-bit ring generator and a phase 

shifter make up a continuous flow sequential decompressor (as introduced in Section 

1.1.3). The ring generator outputs can be inverted by means of additional XOR gates 

controlled by a single complement signal. Since the phase shifter feeds every scan chain 

through a 3-input XOR gate [7], inverting all phase shifter inputs complements all its 

outputs, i.e., it causes all bits of a given cycle to flip. Whenever the content of a flip cycle 

register matches a scan shift counter (Figure 5.1), a Star-EDT controller asserts the 

complement signal for a single cycle period. This match only occurs, if the resultant test 

pattern can detect additional faults. Hence, parent patterns are assigned lists of effective 

cycles, so that the controller can apply every parent pattern repeatedly, each time 

complementing – once per pattern application – all bits of a single shift cycle. A seed 

repeats register stores the number of repetitions of the same parent pattern. Both – the flip 

cycle and the seed repeats registers – receive new content from a list of effective cycles 

kept in the cycle lists memory. 

As an example, consider seed s that yields a parent pattern p. Let pa, pb, and pc be 

derivatives of p obtained by complementing all scan cells of p for time frames a, b, and c, 

respectively. In this case, the seeds memory stores seed s, while the cycle lists memory 

contains the binary-coded values of a, b, and c. The controller starts by disabling the 

complement signal and loading scan chains with the original pattern p. Next, the value of 

a is loaded to the flip cycle register, seed s is decompressed again, and the resultant test 

pattern pa is applied to a circuit. The same is repeated for b and c. The whole procedure 

then continues for other seeds. 

5.2 Stellar BIST Test Scheme 

There are two findings that our solution is based on. First, certain clusters of test 

vectors can detect many related faults. A cluster typically consists of a parent pattern and 

several children vectors derived from it through simple transformations. Consider a single 
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test pattern that detects stuck-at-0 and stuck-at-1 faults at the outputs of a circuit as shown 

in Figure 5.2. This test sets all inputs of an AND super-gate to 1 and all inputs of an OR 

super-gate to 0 (a super-gate is a structural implication abstract representing a circuit block 

whose functionality is equivalent to an AND/OR gate). Now, some of the transformed 

patterns that detect successive stuck-at-1 and stuck-at-0 faults at the same inputs are 

illustrated at the bottom of the figure. Clearly, the original test vector is a good parent 

pattern, since it allows one to derive additional tests through systematic (every eight inputs 

in this example) bit flipping of its respective components. 

Figure 5.2 Test clusters with multiple complements 

It is useful to also consider a circuit that is depicted in Figure 5.3. The first pattern 

detects a stuck-at-0 fault on the output of the super-gate comprising two fan-out-free 

regions (FFRs) made of AND gates. As can be seen, this pattern is a suitable choice, as a 
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parent vector for both FFRs. Derivates of the parent are obtained by complementing any 

of its input bits. This allows the detection of all stuck-at-1 faults at the inputs of the super-

gate constructed through multiple FFRs. In the meantime, other bits of this vector can serve 

as additional flipping choices, that potentially detect some other faults without blocking 

the observation of those already-activated faults. 

Figure 5.3 Parent pattern and its derivatives 
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Figure 5.4 Stellar BIST test cluster 

It also appears that typically a very few scan chains host specified bits of a test 

cube. Although this may depend on a scan chain stitching method and the resultant scan 

architecture, since forming scan chains is guided by a design layout as well as clock and 
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power distribution networks, it nevertheless turns out to be the case across many industrial 

designs, as reported in [94]. 

As is the case with Star-EDT [94], test patterns employed by Stellar BIST comprise 

clusters of vectors. Each cluster consists of a single encodable ATPG-produced parent 

pattern and several children patterns derived from the parent. What contrasts the new 

scheme with the previous approach, is a method to create all parent’s derivatives. Instead 

of complementing bits of just a single scan shift cycle, Stellar BIST complements bits every 

k shift clock cycles during a single test pattern application. This new approach has been 

fostered by observations, like those shown in Figures 5.2 and 5.3. Therefore, if k = 32, then 

the first child pattern is obtained by inverting bits belonging to slices (time frames) 0, 32, 

64, and so forth. Subsequently, the second child pattern is generated by inverting bit slices 

1, 33, 65, etc. The next patterns are obtained in a similar manner by having complemented 

bit slices beginning with shift cycles 2, 3, all the way to 31. However, some of these 

patterns may not be able to detect any new faults not yet covered. These test patterns are 

simply skipped. Given a parent pattern, the resultant cluster of patterns is illustrated in 

Figure 5.4. If k is chosen to be a power of 2, then it eases the design constraints, as shown 

in the next paragraph. It is worth observing that having specified bits in a few scan chains 

and complementing bits of time frames that follow the pattern of Figure 5.2, will most 

likely cause only target specified bits of a test cube to be affected. 

Figure 5.5 is a block diagram of Stellar BIST logic. A CPU, ATE, or any other 

appropriate on-chip device or a device external to the chip but part of the system, may store 

test data used to control this circuitry. A test set is represented by a clock-between-

complements (CBC) vector and test pattern clusters. This CBC vector defines the value k 

of a distance between successive time frames being complemented. Since the content of 

the CBC register is used to gate a down counter producing the actual complement signal, 

k is binary-coded as 2d - 1, where d = log2k. For example, an 8-bit CBC register indicating 

that the complements are done every k = 16 shift cycles, assumes the form 00001111. Every 
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pattern cluster, in turn, comprises an encoded parent pattern (seed) and a binary vector, 

indicating which derivatives of the parent test are deployed. If only derivatives 1, 4, 5, and 

10 should be produced for k = 16, then the child selection vector becomes equal to 

0000010000110010, i.e., with bits b1, b4, b5, and b10 asserted (the least significant bit is on 

the right-hand side). 

Figure 5.5 Stellar BIST architecture 
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The initial offset register is uploaded based on the content of the child selection 

vector in such a way that if bit b of this vector is asserted, b = 0, 1, ..., k - 1, then the register 

gets the binary-coded value of b. The initial offset is subsequently used to initialize a down 

counter, which works synchronously with the scan shift clock. By observing the counter 

and detecting the all-0 sequence on its least significant d bits (determined by the CBC 

value, as discussed in the previous paragraph) one can decide when to yield the 

complement signal. For n-bit registers, this is achieved by n NAND gates whose outputs’ 

product is finally delivered by an n-input AND gate. 

Given the main components of the Stellar BIST controller, the application of a 

single pattern cluster proceeds as follows. After applying the original parent pattern (with 

the complement signal disabled) and setting up the CBC register, whose bits indicate which 

part of the down counter is taken into account, the CPU attempts to load the initial offset 

register, which is subsequently used to initialize the down counter. Let the offset be set to 

3. A very few first states of the counter will, therefore, be the following: 3, 2, 1, 0 (here the 

complement signal is going to be asserted), 2n - 1, 2n - 2, and so forth. Once the least 

significant d bits become the all-0 vector again, the next complement signal is delivered. 

Note that all complements are phase-shifted with respect to the first scan shift clock pulse 

by three cycles in this case. Once the entire child pattern is applied, the initial offset register 

is reloaded with a phase shift corresponding to the next valuable child pattern, and the 

process repeats with the parent pattern seed circulating within the parent seed register, until 

all the desired child patterns are generated. This is now the time to apply the next parent 

pattern with no complements, and then its derivatives, as described above. The former is 

done through a combination of reloading the parent seed register and disabling the 

complement wire driven by the AND gate. 
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5.3 Implementation Flow 

The degree of test data compression attainable by Stellar BIST is a result of storing 

only parent pattern seeds and coordinates of the associated flip cycles. It allows the 

placement of all relevant test data on a chip. This makes the approach compatible with 

deterministic BIST. In the following paragraph, we present a basic test flow that results in 

the highest compression ratios, the most aggressive test coverage ramp-ups, and the most 

efficient usage of test memories. 

A preprocessing step of our test flow consists of a circuit structural analysis. It 

identifies all super-gates (discussed in Section 5.1) within the design and the fan-out free 

regions (FFRs) that they belong to. Furthermore, SCOAP testability measures (as 

introduced in Section 2.2.2) are computed and recorded. A complete set of deterministic 

test patterns is subsequently created by running ATPG. This central step is essentially a 

framework that produces and verifies successive parent patterns and their derivatives 

iteratively, a given number of parents at a time. Typically, a single and compressible parent 

pattern is going to be a result of merging of ATPG-produced test cubes obtained for 

properly selected faults. The fault selection procedure randomly picks a fault f from the 

entire fault list. However, f usually does not become the direct ATPG target. Instead of f, a 

fault at the output of a super-gate that hosts f is selected. As a result, there is a better chance 

of getting the most suitable parent pattern that can subsequently be deployed to yield 

derivative test patterns detecting all target faults, within a super-gate or the corresponding 

FFR (compare Figure 5.3). Moreover, the SCOAP values recorded earlier can also be used 

to guide the selection process, by choosing a fault with the highest sum of controllability 

and observability metrics within FFR hosting f. Every ATPG-produced stimulus now 

becomes a kernel of a test cluster also comprising its children patterns, obtained due to 

multiple complements of the parent pattern by using a user-defined period between 

successive complements, as detailed in Section 5.2. 
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Once a given number of parent patterns are generated, the corresponding test 

clusters are now individually fault simulated with the fault dropping enabled. Note that this 

process is significantly less CPU-intensive than the previous approach of [94], since 

derived patterns are fairly restrained, and their number can easily be controlled by a user 

(setting a proper CBC value). Moreover, every cluster is further revised in such a way that 

only effective child patterns, i.e., those that detect some faults, are retained. As a result, 

every parent pattern is now assigned a binary-coded child selection vector, and the original 

parent patterns are recorded as seeds. The procedure presented above is repeated, until the 

complete test coverage target is reached. 

In order to further reduce the total number of test patterns, a pattern reordering 

procedure is applied to all effective patterns (for both parents and children) obtained in the 

previous steps. These test patterns are first sorted in the descending order, with respect to 

the number of faults they detect, based on information captured during a simulation 

process). In the following steps, a fault dropping simulation repeatedly determines faults 

detected by successive patterns, beginning with a test pattern that features the largest fault 

detection count. Therefore, this phase basically implements a reverse order fault simulation 

that reveals faults not yet detected by the previously examined patterns. It also updates 

child selection vectors for those clusters whose members were removed. It is worth noting 

that the entire test clusters may be deleted during this phase, if none of their patterns, 

including the parent, detect any new faults after reordering the test vectors. The 

postprocessing method, as discussed in [6], can also be served as potential solutions to 

further compact the obtained stored pattern set. 

As a result, the test application time is strictly dependent on the number of test 

clusters and the number of their final components. The algorithm that is presented virtually 

produces a minimal set of test clusters that allow one to flexibly trade-off test coverage, 

test application time, and the size of the on-chip test memories. The algorithm can be 

summarized as follows: 
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 while fault list F is not empty do 

  generate a given number of parent patterns 

  produce all children patterns 

  fault dropping simulate the current test clusters on F 

  save effective patterns 

  update F by removing detected faults 

 run pattern reordering and save effective patterns 

5.4 Experimental Results 

Stellar BIST has been verified by conducting experiments on 12 industrial designs, 

all of them with on-chip EDT-based test compression. They represent different design 

styles and scan methodologies. The basic data regarding the designs, such as the number 

of gates, number of scan cells, scan architecture, and the total number of stuck-at faults are 

listed in Table 5.1. And the results of super-gate analysis for each design are shown in 

Table 5.2. 

Table 5.1 Circuit characteristics 

 Gates Scan cells Chains Chain length Faults 

D1 1.19M 72.3K 400 181 4.41M 

D2 2.07M 148.0K 400 371 7.17M 

D3 3.32M 326.0K 400 814 15.03M 

D5 1.68M 86.0K 400 215 4.97M 

D6 1.04M 57.0K 400 144 1.89M 

D7 1.38M 93.2K 168 555 3.78M 

D8 2.53M 206.3K 370 558 4.94M 

D9 4.83M 325.9K 598 545 13.41M 

D10 4.04M 199.7K 364 549 8.79M 

D11 2.59M 154.0K 1,200 129 8.97M 

D12 2.29M 252.4K 490 516 9.95M 
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Table 5.2 Super-gate structural analysis 

 Gates Super-gates Ratio Max size 

D1 766,145 173,854 4.41 532 

D2 881,012 222,974 3.95 1,528 

D3 1,465,002 381,808 3.84 238 

D5 885,417 227,477 3.89 683 

D6 563,694 155,060 3.64 442 

D7 938,775 203,219 4.62 443 

D8 1,377,846 335,241 4.11 251 

D9 2,828,442 749,333 3.77 371 

D10 2,310,490 540,740 4.27 112 

D11 1,531,011 366,255 4.18 990 

D12 1,226,935 269,052 4.56 750 

 

Table 5.3 Stored pattern (SP) reduction and test time (Time) increase (stuck-at) 

 
Baseline 
patterns 
@90% 

CBC=8 CBC=16 CBC=32 CBC=64 

SP 
(x) 

Time 
(x) 

SP 
(x) 

Time 
(x) 

SP 
(x) 

Time 
(x) 

SP 
(x) 

Time 
(x) 

D1 640 2.50 2.90 3.33 3.90 5.00 5.90 5.00 8.89 

D2 960 3.31 1.47 5.05 2.13 5.00 2.80 5.00 4.47 

D3 640 2.01 2.70 3.33 4.30 3.33 4.50 5.00 10.90 

D4 2,432 2.12 2.26 3.46 3.43 4.76 4.81 4.76 5.67 

D5 9,788 1.14 1.52 1.53 2.05 2.55 2.50 4.63 2.96 

D6 448 1.77 2.43 2.33 4.43 3.50 6.43 3.50 9.67 

D7 80 2.50 2.20 2.50 3.20 2.50 4.80 2.50 6.40 

D8 384 3.00 2.83 3.00 3.16 3.00 4.83 3.00 6.33 

D9 256 4.00 1.75 4.00 2.75 4.00 5.00 4.00 9.25 

D10 11,178 1.38 1.29 1.92 2.51 2.04 3.49 2.15 3.51 

D11 704 3.67 2.27 5.50 2.64 5.50 3.00 5.50 4.18 

D12 1,792 2.15 2.92 3.12 3.49 4.67 5.12 5.60 7.50 

Avg 2,442 2.46 2.21 3.26 3.17 3.82 4.43 4.22 6.64 
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As discussed in Section 5.2, super-gate analysis locates a certain number of gates 

and groups them into corresponding super-gate structures. Parent patterns are generated 

targeting faults at super-gate outputs prior to other fault locations and faults within each 

super-gate are likely to be detected by the derivative patterns of these parent patterns. In 

this way, each design can be treated as a simplified version that is formed by some super-

gates with a reduced fault list. As shown in Table 5.2, for each design, a large number of 

gates (column “Gates”) can be grouped into fewer super-gate structures (column “Super-

gates”) and column “Ratio” may reflect the fault count reduction (or the average size of a 

super-gate) after the super-gate transformation. The last column “Max size” includes the 

size of the largest super-gate for each design. 

Table 5.4 Stored pattern (SP) reduction and test time (Time) increase (transition) 

 
Baseline 
patterns 
@85% 

CBC=8 CBC=16 CBC=32 CBC=64 

SP 
(x) 

Time 
(x) 

SP 
(x) 

Time 
(x) 

SP 
(x) 

Time 
(x) 

SP 
(x) 

Time 
(x) 

D1 4,156 1.59 2.72 2.33 4.08 3.61 5.37 4.64 7.10 

D2 12,608 1.53 2.34 2.14 3.58 3.13 4.98 4.11 6.21 

D3 3,967 1.50 4.23 1.82 6.25 2.38 8.90 3.26 14.01 

D4 14,206 1.52 1.66 2.29 2.93 3.76 4.14 5.29 5.25 

D5 24,216 1.06 1.32 1.13 1.79 1.55 2.18 2.01 2.44 

D6 2,880 1.18 2.77 1.41 4.58 2.65 6.91 3.75 9.86 

D7 640 2.50 2.90 3.33 4.20 3.33 4.90 5.00 10.74 

D8 4,222 1.41 3.46 1.61 4.91 1.89 7.10 2.28 9.68 

D9 448 3.50 1.71 3.50 2.00 3.50 2.29 7.00 7.99 

D10 16,092 1.53 1.79 2.83 2.72 3.93 3.51 4.34 4.63 

D11 1,280 2.50 3.25 4.00 3.60 5.00 4.05 6.67 7.55 

D12 4,032 2.17 3.15 3.32 3.78 4.85 4.65 6.30 7.01 

Avg 7,396 1.83 2.61 2.48 3.70 3.30 4.92 4.55 7.71 
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Other results presented in this section were obtained for stuck-at (Table 5.3) and 

transition (Table 5.4) faults. The second column of Table 5.3 lists baseline pattern counts 

(PC) necessary to achieve 90% stuck-at test coverage (TC) by means of a conventional 

EDT-based compression [7], whereas the second column of Table 5.4 reports baseline 

pattern counts for 85% transition faults reference coverage obtained through a launch-off-

capture (LOC) approach. These two values were selected as widely-deployed test quality 

standards responding to the ASIL D safety requirements. The ISO 26262 demands that 

90% of static permanent faults are detected even when ASIL is set to level B. On the other 

hand, a 90% detection threshold is needed by ASIL D for latent faults. These are targets of 

particular importance for in-system tests executed through the life-time of automotive ICs. 

Although the standard does not mandate a coverage for any particular fault model, the 

industry is primarily targeting 90% stuck-at fault coverage during in-system testing. In 

some cases, transition test patterns are also used, but the target test coverage for such 

patterns is much lower. 

Besides the second column, both tables consist of four main vertical segments 

corresponding to four different values of the clock-between-complements (CBC) 

parameter: 8, 16, 32, and 64. For each design, we report the following statistics: a stored 

pattern (SP) reduction, i.e., a ratio of the number of baseline patterns and the number of 

parent patterns, and a test time increase (Time) determined by dividing the total number of 

test patterns by the number of baseline patterns. Consider, for example, design D2. It needs 

290 parent patterns and effectively employs 1,408 test patterns to reach the 90% stuck-at 

test coverage level for CBC = 8. The conventional sequential test compression scheme 

needs 960 test patterns to achieve the same coverage. Therefore, the observed reduction of 

stored patterns is 960 / 290 ≈ 3.31x, whereas the test application time increases, in this 

case, 1,408 / 960 ≈ 1.47x. As can be seen, Tables 5.3 and 5.4 illustrate one of the advantages 

of Stellar BIST – the ability to significantly reduce the number of patterns that need to be 

saved as seeds, while preserving the attainable test coverage. Moreover, Table 5.5 presents 
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the memory usage reduction for both stuck-at and transition patterns. The memory usage, 

given a CBC value, is calculated by adding the total number of bits required for child 

selection vectors to the total number of bits for EDT compressed parent patterns. For the 

case of D2 and CBC = 8, the total size of child selection vectors is 8 · 290 = 2,320 bits (by 

multiplying the value of CBC and the total number of parent patterns). 

Table 5.5 Memory reduction for stuck-at (SAF) and transition (TDF) faults 

 

CBC=8 CBC=16 CBC=32 CBC=64 

SAF 
(x) 

TDF 
(x) 

SAF 
(x) 

TDF 
(x) 

SAF 
(x) 

TDF 
(x) 

SAF 
(x) 

TDF 
(x) 

D1 2.49 1.58 3.32 2.31 4.95 3.57 4.90 4.54 

D2 3.29 1.52 5.00 2.12 4.90 3.07 4.80 3.95 

D3 2.00 1.50 3.32 1.81 3.30 2.36 4.91 3.20 

D4 2.11 1.51 3.40 2.25 4.60 3.64 4.46 4.95 

D5 1.12 1.04 1.50 1.10 2.43 1.48 4.22 1.84 

D6 1.77 1.18 2.33 1.40 3.48 2.63 3.46 3.71 

D7 2.50 2.50 2.49 3.32 2.49 3.31 2.47 4.94 

D8 3.00 1.40 2.99 1.61 2.98 1.87 2.97 2.25 

D9 3.99 3.50 3.99 3.49 3.98 3.48 3.96 6.92 

D10 1.37 1.53 1.90 2.80 2.00 3.86 2.07 4.19 

D11 3.65 2.49 5.46 3.97 5.42 4.93 5.34 6.47 

D12 2.14 2.16 3.07 3.27 4.53 4.70 5.28 5.94 

Avg 2.45 1.83 3.23 2.45 3.76 3.24 4.07 4.41 

 

As can also be noticed from Table 5.5, Stellar BIST requires, on the average over 

all examined designs, 2.45, 3.23, 3.76, and 4.07 times less memory than the baseline 

scheme to reach the reference 90% test coverage for CBC = 8, 16, 32, and 64, respectively. 

For transition faults, the corresponding numbers are as follows: 1.83, 2.45, 3.24, and 4.41 

times. It is also of interest to compare the presented results with what logic BIST deploying 
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test points can achieve, under otherwise identical conditions. We have run experiments for 

designs D1, D3, D5, and stuck-at faults. The results are as follows: 

• D1: 200,000 pseudorandom patterns, 83.55% test coverage, 3,000 test points 

(approximately 4% of all memory elements); as can be seen after applying 200K tests the 

target coverage is not yet reached, 

• D3: 35,520 pseudorandom patterns, 90% test coverage, 6,000 test points 

(approximately 2% of all memory elements); LBIST needs 20.5 times more patterns to 

match the target test coverage, 

• D5: 156,288 pseudorandom patterns, 90% test coverage, 3,000 test points 

(approximately 5% of all memory elements); LBIST needs 10.5 times more patterns to 

match the target test coverage. 

How large the CBC distance is actually needed to achieve desired test coverage 

with the best reduction of a parent pattern count can also be retrieved from Tables 5.3 and 

5.4. Consider the results for stuck-at faults and design D4. As can be easily verified, the 

parent pattern count reductions obtained for CBC = 8, 16, 32, 64 are 2.12, 3.46, 4.76, and 

4.76, respectively. A similar trend can be observed for the remaining test cases, where 

increasing the value of CBC, and thus potentially increasing the number of children 

patterns, due to the increased number of complements, results in entering the area of 

diminishing returns: there are no further parent pattern count reduction gains, despite 

increasing the value of CBC. Interestingly, for design D9, even the value of 8, i.e., the 

smallest CBC examined, suffices to ensure the best reduction of stored patterns. This 

finding is of special interest, since by increasing the value of CBC, one may visibly increase 

test application time, due to more children patterns needed to secure target test coverage. 

It can also be easily observed in the tables. Although similar results have been obtained for 

transition faults, it is also evident that in this case, the parent pattern count reduction is 

monotonically increasing with the increasing value of CBC. This trend is, however, 

accompanied by a similar increase in test time. Possible trade-offs that must be considered 
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here are better pronounced by additional experimental results presented in the following 

paragraph. 

Figure 5.6 Stored patterns vs. applied patterns 

Figure 5.6 illustrates how the number of patterns to store (in the form of 

decompressible seeds) drops, and how the number of patterns to apply (including both 

parents and their derivatives) rises with the increasing distance between successive 

complements (represented by the variable CBC). Here we use a higher granularity of CBC 

values than that of Tables 5.3 and 5.4. The results are for designs D3 and D5 (stuck-at 

faults), as well as D1 and D6 (transition faults). In each case, the solid curve represents 

stored patterns, whereas the dashed one represents patterns that need to be applied. All of 

the diagrams presented clearly demonstrate that while increasing the CBC value may lead 

to a reduction of parent patterns (and hence relatively small on-chip test memories), this 
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phenomenon is associated with a visible increase in the number of test patterns that need 

to eventually be applied, or alternatively in the increased test time. 

It is also worth noting that the results presented can be used to compare Stellar 

BIST with the original Star-EDT scheme [94]. The number of stored and applied patterns 

for Star-EDT, correspond to points where CBC (here the abscissa) matches the size of the 

longest scan chains. In such a case, there is just a single complement per test application. 

The longest scan chains for designs D3, D5, D1, and D6 (Figure 5.6) feature 814, 144, 181, 

and 555 cells, respectively. As can be seen, designs D3 and D5 (stuck-at faults) need 128 

and 1,344 stored patterns, while applying 55,850 and 37,800 patterns, respectively. 

Similarly, designs D1 and D6 (transition faults) work with 768 and 512 stored patterns and 

apply 51,118 and 68,436 tests. It is indisputable that compared to Star-EDT, Stellar BIST 

provides a wide-range of options, allowing users much better and flexible trade-offs 

between test data volume and test application time. As discussed earlier, it is also 

confirmed here that increasing the value of CBC (including setting it to the scan chain 

length) results in diminishing returns and sub-optimal choices. 

5.5 Conclusion 

Since automotive integrated circuits have become one of the key drivers of 

innovation in test, in this chapter, we introduce a next generation test compression scheme, 

particularly suitable for in-system automotive test applications. It exclusively deploys 

compressed ATPG-produced test patterns and their on-chip-generated derivatives. Given 

an encodable parent pattern, the latter ones are produced by complementing its bit slices 

several times during a single test pattern application. An additional mechanism skews 

multiple complements to increase the number of valuable tests. As a result, the presented 

Stellar BIST outperforms earlier state-of-the-art sequential test compression techniques in 

many respects. It offers very flexible trade-offs between test application time and test data 

volume. This degree of flexibility was virtually impossible to achieve in earlier test data 
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compression schemes, where the optimization scope was rather limited. Furthermore, it 

allows a faster test coverage ramp-up, requires less memory to achieve otherwise similar 

test coverage (which is indicative of higher test data compression and enhanced encoding 

efficiency), or, alternatively, it returns higher test coverage numbers for comparable 

memory usage. Besides its simple in-system test controller, a test memory remains the only 

hardware component that shapes the Stellar BIST silicon real state. Fortunately, the 

scheme’s ability to easily trade-off test data volume and test time, can alleviate this problem 

in a programmable fashion. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Summary 

This thesis introduces three DFT methods that reduce the ATPG-produced test set 

size used with different test schemes. 

In Chapter 3, we have proposed a TPI technique that resolves large internal 

conflicts to increase the number of faults detected by each test pattern, while replacing 

dedicated flip-flops by properly-selected existing functional flip-flops as drivers of the 

control points to minimize the area overhead. Experiments conducted on several industrial 

designs show that similar pattern count reduction can be achieved, when compared to the 

method of control points using dedicated drivers which has already been proven to be very 

effective. 

In Chapter 4, we presented a staggered ATPG process that generates compacted 

test patterns and applies them in a test-per-clock manner, with the help of a scan 

architecture which contains dedicated compactor scan chains formed by capture-per-cycle 

observation test points. This staggered ATPG process can merge more test cubes together, 

by shifting certain incompatible test cubes along scan chains to make them compatible with 

the merge array without losing any fault detection. A limited number of capture-per-cycle 

observation test points are carefully selected to detect faults to reduce the overall pattern 

count. Experimental results show that a good pattern count reduction can be achieved using 

this staggered ATPG with an acceptable number of observation test points, compared to a 

conventional ATPG for both 1-cycle and 2-cycles test patterns. 

In Chapter 5, we seek to meet the high-quality test demands required by in-system 

test (especially automotive test). Therefore, we have developed a Stellar BIST approach 

that obtains the desired test stimuli by complementing multiple bits from a small set of 

stored seeds. Bit-complements are performed through a simple test controller hardware. 
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Valuable test clusters are also generated with a high compression ratio. According to the 

experimental results, the Stellar BIST offers a faster test-coverage ramp-up with less 

memory usage, not to mention the very flexible trade-offs between test data volume and 

test application time. 

Table 6.1 Staggered ATPG with additional conflict-aware control points 

 Without control points With control points 

 
Conventional 

ATPG PC 
Staggered 
ATPG PC 

Pattern 
reduction 

Conventional 
ATPG PC 

Staggered 
ATPG PC 

Pattern 
reduction 

D1 2,564 2,345 1.09x 1,400 953 1.47 

D2 26,375 8,626 3.06x 4,161 2,089 1.99 

D3 3,204 1,878 1.71x 1,724 1,025 1.68 

D4 8,263 4,508 1.83x 5,433 3,000 1.81 

D5 1,914 889 2.15x 1,370 723 1.89 

D6 5,200 5,111 1.02x 1,822 1,151 1.58 

D7 3,206 1,820 1.76x 3,195 1,798 1.78 

 

Furthermore, our proposed methods can also be applied in a combined way for even 

better performance on the reduction of test set size. First, staggered ATPG can be applied 

to designs which have already been inserted with conflict-aware control points discussed 

in Chapter 3 and can work synergistically with these control points. As shown in Table 6.1, 

staggered ATPG is capable of further reducing the pattern count, based on the reduced 

patterns after control points insertion. For D1 and D6, control points can also improve the 

effectiveness of staggered ATPG (from 1.02x to 1.58x pattern count reduction). 

Another option is to combine the Stellar BIST approach with the staggered ATPG. 

This combined solution allows us to generate both parent and children patterns for Stellar 

BIST in a similar way as proposed by staggered ATPG, and with additional capture-per-

cycle observation test points inserted (similar to that discussed in Section 4.4), all Stellar 
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BIST test stimuli can be applied in a test-per-clock fashion. In this case, parent patterns are 

generated from original or shifted test cubes, using the same fault order as discussed in 

Section 5.3. Extra faults can also be detected by both parent and children patterns during 

their shift cycles. Table 6.2 compares the total stored patterns and applied patterns of the 

combined solution with a small CBC value of 8 to the Stellar BIST results in Section 5.4 

(5 designs using stuck-at faults for the 90% test coverage target). As shown in Table 6.2, 

the combined solution using a CBC of 8 requires similar or even less stored patterns, 

compared to the results with a CBC value of 64, while the total number of applied patterns 

is much less than the original Stellar BIST approach. 

Table 6.2 Apply Staggered ATPG to Stellar BIST 

 Original Stellar BIST Combined solution 

 Stored patterns Applied patterns Stored 
patterns 

Applied 
patterns  CBC=8 CBC=64 CBC=8 CBC=64 

D1 256 128 1,856 5,688 128 569 

D2 290 192 1,408 4,288 192 1,344 

D3 1,145 511 5,500 13,792 384 3,116 

D4 253 128 1,088 4,330 128 1,148 

D5 32 32 176 512 32 160 

 

6.2 Future Work 

In this study, we have proposed several different methods to reduce ATPG-

produced test set size. Since we primarily focus on traditional fault models, like stuck-at 

and transition fault models throughout our experiments, the application of our approaches 

on other fault models (especially such as cell internal faults) remains to be explored. 

In Chapter 4, we introduce a staggered ATPG leveraging carefully-inserted capture-

per-cycle observation test points to apply staggered test patterns during shift cycles. 
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Suitable ways to load out the output data have not been examined yet. And it remains to be 

another unexplored area of whether these staggered test patterns, along with their capture-

per-cycle test responses, can be used for diagnosis purposes. 

For the Stellar BIST approach presented in Chapter 5, we focus on optimizing test 

data associated with input stimuli. Output test data may also need to be reduced 

accordingly. This requires an effective test response compaction scheme deployed on the 

output side with the capability of eliminating/tolerating unknown states propagating from 

the output channels. 
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